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Abstract: 

This deliverable presents the improved CYBECO modelling framework for cybersecurity 

risk management. It draws and expands upon deliverable 3.1 Modelling framework for 

cyber risk management. Suggestions from improvements have come from diverse 

sources. Improvements are essentially oriented towards being implementable within the 

CYBECO toolbox and consist of: an improved definition of the basic underlying model, 

better adapted also to cybersecurity terminologies; improved computational algorithms 

adapted to the new model; improved preference models for the cyber defender and the 

cyber attacker; the consideration of issues concerning insider threats and third party 

risks; the consideration of multiple attackers. On the whole, we move beyond standard 

cybersecurity frameworks which do not take into account the intentionality of certain 

threats, properly considering these; we provide models that overcome ordinal scales 

used in risk matrices; allow for repeated interactions between defenders and attackers; 

include behavioural elements in relation with risk aversion and, very importantly, 

reflect the decision of adopting cyber insurance. Our model aims at supporting an 

organization which needs to decide its optimal cybersecurity resource allocation, 

including what security controls and insurance product to acquire, if any.  We also 

include a description of how to implement the models in the CYBECO Toolbox as well as 

a case study for illustration purposes. The core of the document describes in an 

accessible manner the above developments, after motivating the proposed 

improvements. We then include technical appendices referring to the new 

papers/reports developed, and additional support material. The core activities refer to 

Task 3.4 which took place during the second year of the CYBECO project. 
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1 Introduction  

Deliverable objectives. In this deliverable we aim at improving the framework for 

cybersecurity risk management available at D3.1. Such framework was implemented in a 

first version of the CYBECO Toolbox and was presented to a group of experts at AXA, two 

focus groups with experts in cybersecurity risk management and was subject to two 

behavioural experiments. It was also assessed by the members of the Advisory Board as 

well as by the project reviewers and participants at the Lorentz workshop. 

As a consequence of such process a number of weak and strong points emerged. In this 

Deliverable, we aim at mitigating the weak ones and promote the strong ones always 

oriented to its final implementation of the framework in the CYBECO toolbox prototype. 

We emphasize the first model from D3.1, which introduces an integrated cybersecurity risk 

analysis approach to facilitate decision-making regarding ICT systems security as proposed 

in the CYBECO DoW.  

Deliverable structure. The rest of D3.2 is structured as follows. After providing some 

background in the rest of Section 1, Section 2 summarises the key information collected 

from various agents concerning our initial models and implementation. Section 3 describes 

the new version of our core model. Section 4 provides some modelling enhancements 

suggested referring to the consideration of cyber insiders, third party cyber risk 

management and belief formation. Section 5 refers to computational enhancements in 

relation with faster computations with our model and modelling with attack trees. Section 

6 provides generic preference models for cyber defenders and attackers. Section 7 

describes the transition of the ideas towards the CYBECO tool. Section 8 refers to other 

cyberinsurance modelling efforts undertaken. Section 9 provides a final discussion. 

The core of this document aims at describing in an accessible non-technical manner our 

developments, with more technical details in the eight annexes corresponding to papers 

and technical reports. These are also compiled in D8.2, with three other related papers 

from the first year already published or accepted. A ninth annex contains a sketch of the R 

routines developed which form the underlying core of the CYBECO toolbox. A tenth annex 

contains suggestions for improvement from focus groups, the advisory board and reviewers. 

Finally, we include information about a final experiment performed concerning belief 

formation. 

We provide now some background information. 

Cybersecurity. A defining feature of our society is its almost pervasive digitalization. All 

kinds of organizations, from corporations to governments to SMEs, may be critically 

impacted by cyber-attacks (Andress and Winterfeld, 2013). Indeed, the economic impact of 

cyber attacks is outstanding and, consequently, cybersecurity has become an issue of 

major importance, both technically and financially. Furthermore, attacks, espionage, 

insiders and breaches appear to increase in frequency, impact and sophistication (Lloyd’s, 

2017). For instance, the industry estimates that attacks costed as much as 450 billion 
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globally in 2016, causing an impact over the global GDP (0.8% in 2014) of a similar 

magnitude to drug trade (0.9%) or international crime (1.2%) (McAfee, 2017).  

Cybersecurity is emerging as one of the major global concerns (WEF, 2019). Although some 

experts criticize an excessive hype about the potential disruptive capability of large-scale 

cyber-attacks, cybersecurity is a truly relevant problem due to the persistence, frequency 

and variety of threats. Such diversity may be classified according to their motivation, skill 

and constraints (Dantu et al., 2007), and their ability to exploit or create vulnerabilities on 

the targeted systems (DSB, 2013). Important cyber threat sources include the military units 

maintained by global powers; ‘hacktivists’; insiders; and, profit-oriented cyber-criminal 

groups. When it comes to malware, they are usually developed with a goal-oriented 

behaviour (Li et al., 2009) and, consequently, a sound approach is to treat them as 

adversarial actors and counter-attack them with behavioural approaches (Li et al., 2009). 

This is a very important motivating point for CYBECO, as with few exceptions like IS1 

(CESG, 2012), standard methodologies do not explicitly take into account the intentionality 

of certain threats, in contrast with the relevance that organisations like the Information 

Security Forum (ISF, 2016) or Trend Micro (2015) and legislation (Gob. de España, 2018) 

start to give to targeted threats. Relevant cases (Command Five, 2011) include the 2007 

Aurora attacks against Google to obtain confidential data about their algorithms and 

Chinese dissidents; the 2012 Shamoon attack that disabled 30.000 computers of Aramco 

(Brenner, 2013); and the 2013 credit card breach of 40 million customers of the US retailer 

Target (DeNardis, 2015). Attacks with physical consequences are also emerging, including 

the 2010 Stuxnet attack against an Iranian nuclear plant that disabled a fifth of its nuclear 

centrifuges (Brenner, 2013) or the attack on a German steelworks in 2014 that stopped 

their operations (Lee et al., 2014). Another notorious trend over the last years have been 

the indiscriminate ransomware attacks such as the 2017 Wannacry case (Yaqoob et al., 

2017) that affected thousands of large and small organizations across the globe for several 

hours. Similarly, the NotPetya malware (Greenberg, 2018) affected thousands of 

organisations worldwide with an estimated cost of more than 8 billion EUR. 

Cyber risk analysis. Risk analysis is a fundamental tool to help manage these problems 

(Cooke and Bedford, 2001). With it, organizations can assess the risks affecting their assets 

and what safeguards should be implemented to reduce the likelihood of such threats 

and/or their impacts, in case they are produced. Numerous frameworks have been 

developed to screen cyber risks and support risk management resource allocation, 

including CRAMM (CCTA, 2003), ISO 27005 (ISO, 2011), or SP 800-30 (NIST, 2012). Similarly, 

diverse compliance and control assessment frameworks, like ISO 27001 (2013), Common 

Criteria (2012), or CCM (CSA, 2016) provide guidance on the implementation of 

cybersecurity best practices. These standards and frameworks cover detailed catalogues of 

security measures suggested for protecting an organization's assets. Although these 

proposals have virtues, particularly their extensive catalogues of threats and assets, much 

remains left to be done regarding cyber risk analysis from a methodological point of view.   



  

Reference : CYBECO-WP3-D3.1-v2.0-CSIC 
Version : 2.0 
Date 

 

: 2018.04.23 

P 
Page :   9 

D3.2: Improved modelling framework for cyber risk management 
 

   

 

As an example, we reproduce some ideas about MAGERIT (Min. Hacienda, 2012). This 

methodology provides a very detailed catalogue of assets, threats and impacts. However, 

one of its more relevant weaknesses is the use of qualitative methods and risk matrices for 

risk analysis purposes. For instance, the treatment of threat occurrence is weak and based 

on a qualitative likelihood approach, as sketched in Table 1a, and analysed in detail in 

D3.1. Impacts associated with threats are treated in a similarly ambiguous fashion, as 

shown in Table 1b. Again, qualitative values are used as analysed in D3.1. Risks present a 

similar issue, as shown in Table 1c. Ultimately, MAGERIT sheds ambiguous results by using 

risk matrices. 

 

VH 100 Very frequent Daily 

H 10 Frequent Daily 

M 1 Normal Monthly 

L 1/10 Infrequent Every few years 

VL 1/100 Very infrequent Every century 

(a) Probabilities 

Impact 
Degradation 

1% 10% 100% 

Value 

VH M H VH 

H L M H 

M VL L M 

L VL VL L 

VL VL VL VL 

(b) Impacts 

Risk 
Probability 

VL L M H VH 

Impact 

VH H VH VH VH VH 

H M H H VH VH 

M L M M H H 

L VL L L M M 

VL VL VL VL L L 

(c) Risk analysis 

Figure 1: Qualitative vision of threats in MAGERIT 

As indicated in Cox (2008) and Thomas et al (2014), these methods suffer from numerous 

shortcomings including a poor resolution to compare threats, the introduction of errors 

while assigning qualitative values leading to risk acceptance inconsistencies; the promotion 

of several biases like those of centering and category-definition; or, more importantly for 

our cybersecurity problem field, the induction of potentially suboptimal resource 

allocations, originated from range compressions, possibly rank reversals and instabilities. 

We emphasize also Hubbard and Seiersen (2015) and Allodi and Massacci (2017) who focus 

in incorrect applications of risk matrices in ICT. It is also important to stress the absence of 

consideration of the threat behaviour in the elicitation, which is a major component in the 

occurrence of targeted cyber threats. 
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Indeed, with counted exceptions like IS1 (NTAIA, 2012), standards do not explicitly take 

into account the intentionality of some of the cyber threats, a key factor to forecast what 

threats would target the system and what their strategic behaviour would be. Thus, ICT 

owners may obtain unsatisfactory results about the proper prioritization of risks and the 

security controls that should be implemented. Another critical issue, unlike other risky 

domains, is that it is difficult to obtain and analyse data, since organizations are reluctant 

to disclose information about intrusion attempts or consequences of attacks (Balchanos, 

2012), for reputational reasons.  

Cyberinsurance. Regarding this, it is important to highlight how in recent years new cyber 

insurance products have been introduced, of very different nature and not in every 

country, by companies like AXA, Generali, Allianz, or Zurich. However, cyber insurance has 

yet to take off (Marotta et al., 2017; Low, 2017), in spite that organizations are 

increasingly aware of their dependence on new technologies and on how information is a 

critical asset that must be secured so as to not incur in loss of customers, reputational 

damage and sanctions by regulators. Obstacles for researching and developing cyber 

insurance (Marotta et al., 2017) include information asymmetry between agents that 

undermines trust, lack of data due to sensitivity concerns, the evolutionary nature of 

attacks and attackers, and the difficulty of specifying rates of occurrence or damages.  
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2 Input from initial model 

We revise here the main comments from various sources (referees, focus groups with 

experts, advisory board, reviewers) concerning the initial framework and first version of 

the tool prepared. We provide first a comparison of use cases, scenarios, models and 

Toolbox v1 and then sketch suggestions. Annex 10 contain the literals of the suggestions 

and a collation of improvement directions. 

2.1 Comparison with use cases, scenarios and Toolbox v1 

The table below provides a matching of the use cases and scenarios (D4.1) (columns 1 and 

2) with the models in the papers (D3.1) (columns 3 and 4) and the CYBECO Toolbox v1 

(D5.1) (column 5) and proposals for improvements (column 6). Paper 1 refers to  appendix 

1 in D3.1 entitled “An Adversarial Risk Analysis Framework for Cybersecurity” (to appear in 

Risk Analysis); Paper 2 refers to appendix 2 in D3.1 entitled “Some Risk Analysis Problems 

in Cyber Insurance Economics” (appeared in Estudios de Economía Aplicada); and Toolv1 

refers to Toolbox version 1 (Risk case 1 to a fixed demo case, Risk case 3 to a variable 

demo case). It is important to note that the risk cases in the tool refer to SMEs, but several 

of the uses cases/scenarios do not belong to the realm of SMEs (although they coincide 

conceptually). 

 

Use case Scenario Paper 1 Paper 2 Toolv1 Proposal 

Use case 1: Cyber-insurance 

selection process for an SME 

 Model 

in 

paper 

Model 1 

in paper 

Risk 

case 1 

Risk 

case 3 

Include more 

details in tool 

and improve 

model (Annex 1) 

Use case 2: Loss of 

personally identifiable data 

for a large company in the 

financial sector 

Scenario 1: Loss of 

personally identifiable 

data for a large company 

in the financial sector 

Model 

in 

paper 

Model 1 

in paper 

Risk 

case 1  

Risk 

case 3 

Include details 

in tool and 

improve model 

(Annex 1 and 2) 

Use case 3: Insurance fraud 

for an SME in the 

professional services sector 

Scenario 2: Insurance 

fraud for an SME in the 

professional services 

sector 

 Model 2 

in paper 

 Structurally 

similar to the 

insider problem 

dealt with in 

Annex 3 

Use case 4: Products / 

Services Manipulation for a 

large company in the 

manufacturing sector 

Scenario 3: Manipulation 

of Products/Services for 

a large company in 

manufacturing 

Model 

in 

paper 

Model 1 

in paper 

Risk 

case 1  

Risk 

case 3 

Include more 

details in tool 

and improve 

model (Annex 1) 

Use case 5: Insufficient 

insurance coverage for an 

SME operating in the IT 

industry sector 

 Model 

in 

paper 

Model 1 

in paper 

Risk 

case 1 

Risk 

case 3 

Treatment 

available in  Del 

3.1. Some other 

ideas in Annex 

1. 
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Use case 6: Accumulation of 

cyber-incidents following a 

single large-scale attack 

with involvement of 

reinsurance in the claim 

process 

  Model 3 

in paper  

  

 

The following conclusions emerge from the above comparison and drive the developments 

of the deliverable: 

 The scenarios and use cases applying to the tool refer only to risk cases 1 and 3. 

 Risk case 1 will be left as a demo case with minimal involvement from the user. 

However, given the comments in Annex 10, we shall need to improve language, 

documentation and interface concerning it. 

 We shall freeze risk case 2 in the tool for these reasons: 

o Not required by use cases or scenarios proposed. 

o It would be part more of a back office tool for an insurance company, 

whereas CYBECO would be more of a front office tool for insurance 

companies, cybersecurity consultants and their customers  

o However, the design of cyber insurance products problem is mentioned in 

both papers and we describe below how, and in Appendix 1, the design of 

cyber insurance products may take place based on what we have developed.  

 We should enhance as much as possible risk case 3 with more threats, security 

controls, insurance products, type of company detailed in the use cases and 

scenarios.  

 For use case 3, scenario 2, the problem is conceptually close to the insider threat 

model developed below.  

 We shall prepare a paper describing the CYBECO tool and final model developed 

(Annex 1). 

 For the crossed cells, additional tools/products could be developed, but are out of 

scope of this project (as they were not in the proposal). 

2.2 Recommendations from focus groups, advisory board and 

reviewers 

We also collected comments and recommendations from focus groups including experts in 

AXA Group security, the project advisory board, the EC’s reviewers of the project, referees 
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of the papers submitted, participants at the Lorentz seminar and internal discussions. 

Annex 10 specifies their comments and specific answers for each of the relevant questions, 

issues or input provided by these parties. In the rest of this section, we highlight the main 

drivers emerging from such recommendations. 

 There is a need to better adapt terminology and wording to standards like NIST or 

ISF. 

 Even though these are prototype models and tools, there is a need to increase the 

number of elements (threats, controls, impacts,…) in them. Include also an option 

‘Other ….’. Take into account the Cyber Essentials. In that sense, we should include 

also constraints referring to not issuing cyber insurance unless minimal controls are 

implemented. 

 There is a need to better link with standard IT measures of availability, integrity 

and confidentiality. More generally, an improved preference model for cyber 

defenders seems in order, as well as better for attackers. Objectives of defenders 

and attackers do not need to be aligned. 

 There is a need to consider issues concerning insiders. 

 There is a need to consider third party cyber risk issues. 

 There is a need to stress the combination of adversarial and non-adversarial cyber 

threats as well as cyber and environmental threat, and human errors. 

 There is a need to further split assets (e.g., servers and computers). 

 There is a need to split between operational and maintenance costs. 

 There is a need to consider the impact of controls over insurance prices. 

 There is a need to better inform about how likely are attacks. 

 There is a need to include various types of attackers and multiple attackers. 

 There is a need to better account for available cyber insurance products and how 

the models may be used for designing such products. 
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3 Updated model 

In D3.1 and Rios et al. (2018 and 2019, both annexes 1 and 2 of D3.1), we have presented 

an approach to support cybersecurity resource allocation. When compared with standard 

cybersecurity frameworks, our proposal provides a more comprehensive method leading to 

a more detailed modelling of risk problems, yet, no doubt, more demanding in terms of 

analysis. We believe though that the stakes at play are so high at many organisations, 

especially, in critical infrastructures and sectors, that this additional work should be worth 

the effort.  

We start by providing an increasingly detailed view of the cybersecurity risk management 

problem. It will lead to the definition of our basic underlying model below. For additional 

motivation, recall our Introduction to risk analysis in Deliverable 3.1 

Overview of our model 

In a nutshell, as reflected in Figure 2, the cybersecurity risk management problem refers 

to an organisation which faces potential threats that may have impacts on it. We could 

choose an appropriate cybersecurity portfolio to manage such risks as best as possible. The 

portfolio might include a cyber insurance contract to eventually transfer risks. 

 

 

Figure 2: High-level categories of the cybersecurity risk management problem 

These elements can be further specified as reflected in Figure 3 as follows: 

 The organisation is basically described in terms of its profile and assets, together 

with what we shall call other organizational features. 

 Wie distinguish between the following threats, reflecting the ISF classification: 

o Environmental threats: Incidents in external systems outside the control of 

the organisation. 

o Accidental threats: Failures or human errors in systems within the control 

of the organisation.  

o Non-targeted cyber threats: Cyber attacks that target organisations 

opportunistically, e.g., through the most vulnerable target, or randomly. 

o Targeted cyber threats: These are differentiated from non-targeted ones 

because another organisation, called attacker, devotes resources to 

specifically harm the defending organisation.  
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 Impacts will be separated according to: 

o Insurable impacts, which may be partly covered by an eventual insurance 

contract.  

o Non-insurable impacts, which will not typically be covered by insurance.  

 Finally, the cybersecurity portfolio will include: 

o Security controls, put in place by the organisation covering protection and 

prevention activities as well as detection of and response to threats, partly 

reducing the likelihood of the threats, partly mitigating their impact. 

o Recovery controls, typically implemented to respond and recover from the 

attacks, reducing their eventual impact. 

o Insurance aimed at reducing the burden of the attacks, partly serving to 

transfer risks. 

As in ISF's classification, we further separate the security controls between procedural 

(referring to practices and procedures to enhance security), technical (concerning digital 

protection technologies) and physical (dealing with physical protection means). The above 

instruments will typically have to satisfy certain constraints in relation with available cyber 

security budgets, compliance requirements and others. 

 

 

Figure 3: Subcategories of the cybersecurity risk management problem 

Once we have found the relevant categories and subcategories, we may consider the 

elements within each of such subcategories. For this, we may take into account various 
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catalogues from e.g. the methodologies mentioned above, as exemplified in Figure 4 in 

which we have included just a couple of instances per category. 

 

 

Figure 4: Subcategories with examples 

A final important defining issue refers to how do we link the corresponding assets with the 

relevant impacts which will characterise cybersecurity risk management from the 

perspective of the incumbent organisation. Conceptually, we just need to link the 

identified relevant assets with the corresponding identified relevant impacts as reflected 

in Figure 5. 

 

 

Figure 5: Linking assets and impacts 
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Sketch of model 

Based on the schematic description above, we formulate the basic qualitative model 

underlying our DSS and then sketch how it may be solved once we have provided the 

required quantitative inputs. We start by describing our generic qualitative model for 

cybersecurity risk management. The aim is to support an organisation in its cybersecurity 

resource allocation process. We distinguish between a Defender to which our DSS will 

support in her allocation and, initially, an Attacker which will try to perpetrate attacks to 

the Defender in pursue of certain goals. 

We represent the problem as a bi-agent influence diagram (BAID) in Figure 6, with the 

terminology used in Banks et al. (2015): the diagram includes oval nodes which represent 

uncertainties relevant for the problem; hexagonal utility nodes which model preferences 

over consequences; rectangle nodes portraying decisions modelled through the set of 

relevant alternatives at such point; and, finally, double oval nodes representing 

deterministic factors relating the values of the predecessors of the node. The diagram also 

includes arrows pointing to decision (meaning that such decisions are undertaken knowing 

the values of the predecessors) and chance and value nodes (meaning that the 

corresponding events or consequences are influenced by the predecessors).  Light coloured 

nodes designate nodes belonging just to the Defender problem; darker ones to the 

Attacker; stripped ones are relevant to both agents' decisions. 

  

 

Figure 6: Bi-agent influence diagram for the basic underlying model  
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We detail now the various nodes available which correspond with the problem elements 

described in the earlier overview. 

We start with a description of the organization profile and features, which will be 

deterministic; we designate them with 𝑓𝑡. We then identify the threats relevant to the 

organisation. As mentioned, we distinguish between: environmental, designated through 𝑒; 

accidental, designated through 𝑎; and non-targeted cyber threats, designated 𝑛𝑡𝑐, all of 

them modelled through uncertain nodes. Besides, we shall also consider, targeted cyber 

threats designated 𝑡𝑐; we model them as decisions, but associated with a different agent,   

the Attacker, who perpetrates its attacks with information concerning 𝑓𝑡 and 𝑠𝑒𝑐. Having 

identified the threats and relevant assets, we may identify the impacts which we separate 

between insurable, called 𝑖𝑖, and non-insurable ones, referred to by 𝑛𝑖𝑖. Then, the 

organisation may identify the actions that may be undertaken to mitigate the likelihood 

and/or impact of the threats. The three types of instruments, security controls 𝑠𝑒𝑐, 

recovery controls 𝑟𝑒𝑐 and insurance 𝑖 are modelled with decision nodes. They will have 

(security and insurance) costs, which will typically be deterministic; we designate them by 

𝑐𝑖𝑐. The above instruments may have to satisfy certain constraints. With all the relevant 

elements in place, we may then prepare the preference model for the Defender through 

her utility 𝑢𝐷, based on a value node.  

We turn now to the remaining elements faced by the Attacker mainly referring to the 

detection and identification of the attacker, which we designate by 𝑑. Note that detection 

could depend on the controls implemented, but we may ignore such fact for most 

attackers because they typically undertake the attack remotely and their identification, in 

the sense of being able to prosecute them, depends more on their failures as attackers 

(e.g., the language they use in the code) than on the defender forensic capabilities. The 

exception are insiders, who are more exposed to being detected (in this case we will link 

the security control portfolio with the insider detection node). Finally, with all his relevant 

elements in place, we consider the preference model for the Attacker through the utility 

𝑢𝐴 of the Attacker through a value node.  

The above may be seen as a basic template which may be simplified, for example, by 

eliminating the 𝑟𝑒𝑐 node, if it is not deemed relevant, or by including several Attacker 

blocks. An example in Annex 1 showcases this idea. 

 

Assessment and Computation 

Once structured, we first assess the non-strategic elements (utilities and non-adversarial 

probabilities) in the Defender problem. We then assess the random utilities and 

probabilities in the Attacker problem and simulate from it to estimate the adversarial 

probabilities in the Defender problem. In section 6 we describe the computational 

refinements introduced. Annex 6 contains all these developments with an example. 
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The first stage when solving the Defender problem in Figure 6 is the provision of the 

quantitative models required at various nodes. We need to provide the following elements: 

 At chance nodes, we must define the relevant events and the corresponding 

conditional probability distributions. For example, at the environmental threat 

node we need to elicit the relevant events 𝑒 that may affect the organization and 

the distribution 𝑝(𝑒|𝑠𝑒𝑐, 𝑓𝑡), which represents the probability that environmental 

threat 𝑒 happens, assuming that the preventive portfolio sec has been implemented 

by an organization with features 𝑓𝑡. The threats would be chosen from a catalogue 

of relevant threats and the distributions from one of relevant parametrised 

distributions as illustrated in Annex 1.  

 At deterministic nodes, we must define the functions relating the values of the 

node with the predecessors, if they exist. For example, at the security and 

insurance costs node we would have a function 𝑐𝑖𝑐 = 𝑔(𝑠𝑒𝑐, 𝑟𝑒𝑐, 𝑖), which 

represents the costs associated with the portfolios sec, rec and insurance i, 

typically aggregated additively. 

 At decision nodes, we must define the alternatives available at the corresponding 

time point. For example, at node Security control portfolio we must define the 𝑠𝑒𝑐 

portfolios relevant to the organization, characterized by its features 𝑓𝑡. The 

features induce which controls from an available catalogue are relevant, from 

which we choose those considered incumbent. From them, we would generate the 

portfolios satisfying the corresponding constraints. 

 At the utility node, we must define the relevant preference model which, in our 

case, would be a function 𝑢𝐷(𝑐𝑖𝑐, 𝑖𝑖, 𝑛𝑖𝑖), adopting the general form we detail in 

Annex 2. 

The above assessments are standard and may be based on data and/or expert judgement,  

except for 𝑝(𝑡𝑐|𝑠𝑒𝑐) which models the beliefs concerning the targeted cyber threats given 

the security control portfolio implemented, as it entails strategic thinking. 

When dealing with the strategic problem of the Attacker, we have to take into account the 

fact that the Attacker has means to obtain information about the organisation; namely, 

some of their security controls and organisation features (𝑠𝑒𝑐, 𝑓𝑡). We also use random 

probability and utility models to model our uncertainty about the Attacker beliefs. So, 

given the portfolio (𝑠𝑒𝑐, 𝑓𝑡) – observable by the Attacker – we associate with each attack 𝑡𝑐 

their random expected utility to determine the random optimal attack 𝑇𝐶∗|𝑠𝑒𝑐, 𝑓𝑡 

maximising the Attacker random utility and, subsequently, estimating the probability 

distribution of the attacks 𝑝(𝑡𝑐|𝑠𝑒𝑐, 𝑓𝑡). 

Based on the above assessments, we associate with each feasible combination of security 

controls and insurance products (𝑠𝑒𝑐, 𝑟𝑒𝑐, 𝑖𝑖) their expected utility to find the portfolio with 

maximum expected utility, defined as (sec∗, 𝑟𝑒𝑐∗, 𝑖𝑖∗). 

As mentioned, Annex 1 contains a full description and an illustration. Below we provide an 

illustrative example of the information that the model generates, basically what the model 

provides to the CYBECO Toolbox for its output. 
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Example – Solution (and other relevant results) 

Solving the defender problem, we find the best portfolio that would consist of installing all the 

security controls and insurance. Additionally, the model provides the different combinations of 

security controls and insurance from best to worst, as well as other associated indicators such as 

probabilities or expected monetary impacts. The table below provides an example of this. 

Ranking  1 2 3 4 5 

Firewalls and Gateways YES YES YES YES YES 

Secure configuration YES YES YES YES YES 

Access control YES YES YES YES NO 

Malware protection YES YES NO NO NO 

Patch and vulnerability mgmt. YES YES YES YES YES 

Hazard protection YES YES YES YES YES 

Security controls cost €3990 €3990 €3390 €3390 €3060 

Physical and personal damage 

insurance YES YES YES YES YES 

Data loss insurance YES NO YES NO NO 

Insurance cost €500 €300 €500 €300 €200 

Expected** asset losses €68,716.67 €68,716.67 €69,472.73 €69,472.73 €70,724.67 

Expected insurance payment €21,386.51 €20,441.51 €21,521.51 €20,441,51 €20,441,51 

Expected damages to 

facilities and property €22,712.79 €22,712.79 €22,712.79 €22,712.79 €22,712.79 

Expected impact of business 

downtime €44,953.88 €44,953.88 €45.559.94 €45.559.94 €46.661,88 

Expected number of PII* 

records lost 7 7 8 8 9 

Expected impact of PII 

liability €1050 €1050 €1200 €1200 €1350 

Probability of fire 2% 2% 2% 2% 2% 

Expected number of 

employee errors per year 0.31 0.31 0.31 0.31 0.31 

Expected number of malware 

attacks per year 0.25 0.25 0.25 0.25 0.34 

Probability of targeted 

exfiltration*** 32.76% 32.76% 33.74% 33.74% 35.35% 

Probability of targeted data 

manipulation 48.16% 48.16% 49.20% 49.20% 50.70% 

Probability of targeted denial 

of service 52.78% 52.78% 54.01% 54.01% 55.24% 

* PII: Personal identifiable information 

** Note that expected values should be interpreted in statistical terms. For instance, the €22,712.79 expected 

damages to facilities come from the fact that there is a 2% of fire every year that, if happens, would cause 

hundreds of thousands of damages in euros. It should not be interpreted as the most frequent value to expect 

– which in the case of damages due to fire is 0 per year. 

*** Note that in this example case the defender is being targeted by hacktivists and cybercriminals and, thus, 

the probability of targeted attacks is very high. 
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4 Modelling enhancements 

In this section we describe the main modelling developments enhancing the basic model 

described in Section 3. They were based on comments received from various sources as 

outlined in Section 2 as well as by the referees of papers submitted in Year 1. They include 

three topics: insider threats, supply chain cyber risk management and belief formation. 

Insider threats  

Insider threats are encountered in many risk analysis areas including international security, 

geo-politics, business, and, specially, cyber security. They are not only widely perceived to 

be significant, but also often considered to be more damaging and more likely than 

outsider attacks. Moreover, it is feared that the impact of the insider threat problem 

actually known is only the tip of an iceberg as many organizations are choosing not to 

report such incidents unless required to do so by law: it is a field in which little data is 

available, specially in the cyber security domain. Protection from insider threats is 

challenging as the perpetrators might have access to sensitive resources and privileged 

system accounts. Finally, solutions to insider threat problems are considered to be 

complex: technical solutions do not suffice since insider threats are fundamentally a 

people issue. In its simplest form, it is natural to view the insider threat problem as a two 

player game. We may call the first player the organization and the second one, the 

employee. A typical scenario would be as follows: since insider threats are a well-known 

phenomena, it will frequently be the case that several measures would have already been 

implemented by the organization to prevent or deter an insider attack. The employee will 

typically be aware of the measures in place and plans an attack accordingly. Once the 

attack has been carried out and detected, the organization will undertake actions to end 

the attack and mitigate any damage caused, possibly based on the resources deployed at 

the first stage. This type of interactions have been named sequential Defend-Attack-

Defend games.  

During CYBECO we have provided two ARA models to deal with the problem of insiders. 

First, we use an ARA Defend-Attack-Defend model between the organization and the 

employee. We then segment the employees in three classes (good, inadvertent and 

malicious insiders) considering more sophisticated ARA models and illustrate the concepts 

with a cyber security example. We could include the insider Attacker node as another 

instance of Attacker node as in Figure 6, and consequently in the Toolbox. 

This material is covered in detail in Annex 3. 

 

Supply chain cyber risk management 

Supply chain risk management (SCRM) has come into place to implement strategies to 

manage risks in a supply chain with the goal of reducing vulnerabilities and avoid service 

and product disruptions. As in other risk analysis application areas, SCRM usually involves 

four processes: identification, assessment, controlling and monitoring of risks. Tang and 
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Tomlin (2008) define the field as the management of supply chain risks through 

coordination or collaboration among supply chain partners to ensure profitability and 

continuity and consider four basic areas to mitigate their impact: supply, demand, product 

and information management.  Due to the proliferation of cyber attacks and the increasing 

interconnectedness of organizations, a major feature of recent interest refers to new 

cyber threats affecting supply chain operations in what we shall call Supply Chain Cyber 

Risk Management (SCCRM). We could also call it third party cyber risk management. Recall 

the Target attack described in Section 1. Another relevant attack was Wannacry which 

took over, among many others, Telefonica and the UK NHS producing the unavailability of 

numerous services, which entailed costs estimated to have reached $4 billion, Berr (2016).  

During CYBECO, we have presented a general framework for SCCRM. We provide a general 

description, covering models to forecast attacks and their impacts, integrating such 

information to provide relevant risk indicators. Due to lack of data typical of cyber security 

contexts, we need to rely on expert judgment to assess the involved parameters. We also  

outline its implementation and a numerical example. This may be used for third party 

impacts if we decide to include them in our cyber risk analysis. 

This material is covered in detail in Annexes 4 (general framework) and 5 (expert 

judgement assessment). Moreover, this one provides further illustrations on the use of SEJ 

for cybersecurity risk assessment. Third party cyber risk is also mentioned in Annex 2 when 

referring to cyber security preference models. 

 

Belief formation 

Structured Expert Judgement (SEJ) elicitation has a long history of successes, both in 

methodology and application. Hence, it has become a major ingredient within the risk and 

decision analysis practice (Bedford and Cooke, 2001). A significant feature of these 

disciplines is their emphasis in decomposing complex problems into smaller pieces that are 

easier to handle and then recombining the piecewise solutions to tackle the global 

problem. One example refers to belief assessment which benefits from decomposition, 

typically through the argument of extending the conversation. Rather than directly 

assessing the probability of an outcome, one finds a conditioning partition and assesses the 

probabilities of the outcome given the conditioning events. From these, and the 

probabilities of the conditioning events, the law of total probabilities enables calculation 

of the unconditional probability of the outcome. Tetlock and Gardner (2015) call this 

approach Fermitisation and present it as a key strategy for the success of their super-

forecasters. 

Various forms of decomposition pervade risk and decision analysis. They simplify the 

complex cognitive tasks and mitigate expert reliance on heuristics that can introduce bias, 

ensuring that experts and decision makers actually analyze their decision making problems.  

The decomposition typically entails more assessments, though these tend to be simpler 

and more meaningful, leading to better decisions.  



  

Reference : CYBECO-WP3-D3.1-v2.0-CSIC 
Version : 2.0 
Date 

 

: 2018.04.23 

P 
Page :   23 

D3.2: Improved modelling framework for cyber risk management 
 

   

 

During CYBECO we have presented and studied Adversarial Risk Analysis (ARA) as a 

decomposition strategy for game theoretic problems from a Bayesian perspective. ARA can 

be framed as a tool for SEJ elicitation when we need to deal with probabilities referring to 

actions by opponents. As an example, in Chen et al. (2016) nearly 30% of the questions 

posed to experts somehow involved adversaries (e.g. Will Syria use chemical or biological 

weapons before January 2013?, asked in 2011). We do show how this strategy can actually 

improve non-structured expert assessment of the opponent’s actions as well as propose 

several ways to implement ARA in practice. 

We illustrate the relevance of such approach as a decomposition technique to forecast 

adversarial actions in game theoretic contexts, which could be added to the SEJ toolkit. 

We show how the ARA decomposition strategy breaks down an attack probability 

assessment into multi-attribute utility and probability assessments for the adversary. For 

the ARA approach to be worthwhile, it is expected that the resulting probabilities are more 

accurate than the ones that would have been directly obtained and, also, that the 

corresponding increased number of necessary judgements are cognitively easier. 

Theoretical simulations have shown the relevance of the approach. Initial experiments 

have been conducted to validate these ideas. Thus, we have shown that ARA may improve 

the results of direct SEJ.  

Annex 8 reflects a theoretical justification for ARA as a SEJ tool. Annex 11 reflects the 

initial experimental setup to validate such ideas currently under processing. 
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5 Preference models 

In this section we cover generic families of preference models relevant for both the 

Defender and the Attacker. The first issue was suggested by the reviewers and the advisory 

board, although it was sketched in Deliverable 3.1; the second one is a natural extension. 

Defender preference model  

We have consolidated and expanded the work in this topic undertaken in Deliverable 3.1 

now presented as Annex 2. Relevant aspects in our risk analysis approach is (a) forecasting 

the potential consequences of the different risk identified in the risk analysis and (b) 

building the evaluation of them regarding stakeholder preferences and risk attitudes. To 

facilitate the identification and assessment of objectives and preferences, we propose 

three templates: 

 A generic tree of potential cybersecurity objectives for ICT owners. We provide 

several relevant attributes for their subobjectives. 

 Forecasting models for such objectives. 

 A generic multi-attribute utility function to assess the previous cybersecurity 

objectives regarding ICT owners’ preferences and risk attitudes. 

Tree of Cybersecurity objectives. We provide a generic tree of objectives (the 

performance measures that we want to optimise) for ICT owners in a cybersecurity 

context. Ideally this could be shown to cybersecurity stakeholders who would pick from it 

the relevant objectives for their problem at hand. For each objective, we identify the 

corresponding attribute in which we assess it. There are several requirements that the 

objectives in a decision-making problem should meet (Keeney and Gregory, 2005): 

Comprehensive; Measurable; Relevant; Unambiguous; Understandable and communicable. 

We distinguish between natural attributes that provide a direct measure of the objective 

involved (e.g., repair costs in €), proxy attributes that have a relationship to the objective 

(e.g., website downtime – in an online store – regarding the income generation objective) 

and used when no natural attributes are suitable, and constructed scales. 

Some cybersecurity frameworks provide catalogues of concepts analogue to our 

cybersecurity objectives, mostly those addressing business impact analysis in cybersecurity 

or business impact analysis in general including ETSI GS ISI 002 v1.2.1 (2015), ISO 22317 

(2015b), OWASP business impacts (2017), OECD types of cyber losses (2017) the ENISA 

Information Package for SMEs (2007), the ENISA report on ICT business continuity 

management for SMEs (2010), and CYBECO deliverable on the definition of cyber insurance 

scenarios (CYBECO D4.2, 2018). In general, they depict a few general categories of impacts 

(legal and regulatory, productivity, financial, reputation and loss of customers) with some 

examples or subcategories. However they do not meet the requirements for objectives we 

mentioned earlier. Most of them provide a list of recurrent business impacts rather than a 

comprehensive list that encompasses less typical impacts (e.g., physical impacts). 
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Similarly, they provide types of objectives that somehow overlap: most of the impacts 

affect monetary objectives and, thus, some categorisation among them is recommended. 

For instance, some costs affect specific assets (e.g., asset degradation or activity 

interruption) whereas others are more general (e.g., competitive advantage, reputation). 

Besides the existing lists of cybersecurity impacts, the main conceptual influences on our 

final list come from asset management and law. First, asset management – e.g., ISO 55000 

(ISO, 2014) for assets in general or ISO 19770 for ICT assets (2015a) – it helps to 

conceptualise the different status that an asset could attain is important, so that engineers 

could characterise how an asset affects a system or the organisation in terms, for instance, 

of reliability or predictability. Another conceptual influence comes from law, in particular, 

the distinction between damages on property (a.k.a. economic or pecuniary damages) and 

damage on persons (a.k.a. general or non-pecuniary damages). This facilitates the 

distinction between objectives that can be measured in monetary terms (directly or 

through estimation) and others that are of non-monetary nature and, thus, need special 

considerations when it comes to their evaluation (e.g., through the value of statistical 

life). It also helps on the distinction between the owners of the objectives (i.e., health and 

environmental damages are suffered always by third parties besides the monetary, legal or 

reputational consequences that these damages could cause to the organisation). We have 

also made an effort concerning relating the usual availability, integrity and confidentiality 

criteria in business terms. 

Based on such catalogues and the described approach, we have developed a generic tree 

of cybersecurity objectives for a generic organisation, which we summarise in Figure 7. 

The general categories are the following: 

 Minimize operational costs. We refer here to the assets and activities that 

constitute the inventory and operations of an organisation. All of them measurable 

in monetary terms, i.e. the corresponding attribute would be euros. 

 Minimize income reduction: We refer here to impacts that reduce the income 

obtained by the organisation. All of them are measurable in monetary terms. All of 

them measurable in monetary terms.  

 Minimize other costs: These refer to other impacts that affect an organisation. It 

include some strategic, compliance and financial costs. All of them measurable in 

monetary terms. 

 Minimize reputation impact: We refer here to impacts over reputation that affect 

the trustworthiness of the organisation as an institution, rather than those more 

directly measurable in monetary terms that impact brand value or minimise 

income/service. In principle, these impacts cannot be fully represented with 

monetary attributes. 

 Cybersecurity costs: It is practical to separate the costs related with managing 

cybersecurity, since this is the activity we aim to support in our decision-making. 
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 Impact to other organizations: A cybersecurity incident in our organisation might 

affect other organisations and, thus, the organisation objectives also involve 

minimising damage to them. This is related with the supply chain cyber risks 

mentioned above. 

 Harm to people: A cybersecurity incident might also affect people such as 

employees, customers, by-standers or local communities. Therefore, the 

organisation objectives could also involve minimising harm to people. Some of the 

sub-objectives entail impacts with have been very rare, so far, in cybersecurity, but 

the emergence of industrial systems, smart infrastructures and mass surveillance 

bring these risks to the fore (e.g., Stuxnet). 

 Environmental damage: Similar to damage inflicted to people, the environment 

might be affected by cyber attacks against systems with physical operations. 

 

Figure 7: Cybersecurity objectives. Green (measurable in monetary terms), blue (non-monetary). 

Preference modelling. From the previous list of cybersecurity objectives, the incumbent 

stakeholders could choose the relevant ones. Then, we need a procedure to model 

stakeholder preferences and risk preferences. For this, we use the classic concepts of 

measurable multi-attribute value function (Dyer and Sarin, 1979) and relative risk aversion 

(Dyer and Sarin, 1982). First we aggregate the attributes with a muli-attribute value 

function of the type  

𝑢(𝑐) = ∑ 𝑘𝑖𝑢𝑖(𝑐𝑖)

𝑞

𝑖=1

, 

where ki is the weight for the attribute I; we then elicit the risk attitude assuming 

constant risk aversion or proneness and then combine both approaches adopting a 

functional form:  

𝑢(𝑐) = 1 − exp(−𝜌∑𝑢𝑖(𝑐𝑖)),   𝜌 > 0. 

𝑢(𝑐) = ∑𝑢𝑖(𝑐𝑖). 

𝑢(𝑐) = 1 + exp(𝜌∑𝑢𝑖(𝑐𝑖)),   𝜌 > 0 ; 
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This is the approach that we follow in CYBECO to facilitate modelling the Defender’s 

preferences, as it is not overly demanding cognitively and it is relatively general in its 

assumptions. 

In Annex 2, the whole process is illustrated and we also include procedures to forecast the 

cybersecurity impacts.  We also include the construction of a default utility function used 

in the Toolbox. 

 

Attacker preference model 

We briefly draw attention now over our perspective on the attacker’s preference 

assessments concerning the consequences of the decision-making problem, that is, the 

random utilities. We shall usually have some information about his multiple interests, e.g. 

when dealing with terrorism problems, Keeney (2007) and Keeney and von Winterfeldt 

(2010) present extensive classifications of criteria amongst which to choose. The above list 

for the Defender may be also used for similar purposes. 

Keeney (2007) then advocates that standard utility methods may be adopted by 

interviewing experts in the problem at hand, therefore developing utility functions 

modelling A’s preferences. However, note that such preferences are not directly elicited 

from A, but rather through a surrogate. Thus, intrinsically, there is uncertainty about A’s 

preferences. An alternative approach is to aggregate the objectives with a weighted 

measurable value function, as in Dyer and Sarin (1979). As an example, we could consider 

an additive value function for the Attacker. The uncertainty about the weights could be 

modelled using a Dirichlet distribution, so that we may estimate their value and then 

associate random variables with the corresponding means with one further judgement, e.g. 

fixing one of the parameter’s variance. Finally, using the relative risk aversion concept 

(Dyer and Sarin, 1982), we could assume different risk attitudes when modelling the 

attacker’s utility function, where we would typically assume risk proneness. Further 

uncertainty about the risk coefficient may be modelled e.g. through uniform distributions.  

In any case, to determine all the required distributions, we may ask experts to directly 

elaborate such distributions or request them to provide point estimates of the weights and 

coefficients and build the distributions from these.  

The general approach is described in Annex 8 and an illustration is available in Annex 1. As 

in the Defender case, we include default Attacker utility functions in the Toolbox. 
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6 Computational enhancements 

In this section, we describe computational enhancements to improve computations in our 

cybersecurity framework. We first sketch the general procedure proposed (available in a 

broader context in Annex 1); then, the enhancements in relation with the application of 

augmented probability simulation (available in detail in Annex 6); and finally the 

conversion of attack trees into belief networks to facilitate cybersecurity resource 

allocation (available in detail in Annex 7).  

 

General computational description 

The optimisation process may be cumbersome and we discuss here how we may implement 

it. First, recall that we need to compute the expected utility of each portfolio of security 

controls, recovery controls and insurance. For each portfolio, we may approximate by 

Monte Carlo its expected utility, where sampling from the required distributions is easily 

performed by forward sampling based on the influence diagram in Figure 6. We can also 

use importance sampling to avoid generating new samples for each portfolio that we wish 

to evaluate. 

As for the optimisation part, when the number of portfolios is small, we just need to 

approximate the expected utility at each portfolio and find the optimal one. When the 

number of portfolios is large, or we have continuous portfolios, we may proceed in, at 

least, three ways: 

 Evaluate the expected utility at some portfolios, approximate the expected utility 

through a regression metamodel and optimize the regression surface to obtain the 

approximate optimal portfolio.  

 Use an optimization model which requires only functional evaluations, like the 

classic Nelder-Mead algorithm, and let the algorithm run until a local optimal 

portfolio is detected.  

 Use an augmented simulation algorithm, sample from it through an MCMC approach 

until convergence is detected and, then, find the approximate sample mode of the 

marginal distribution on the portfolios. 

This is fully described in Annex 1. The current version of the Toolbox incorporates the case 

in which the number of portfolios is small. 

 

Augmented probability simulation  

One of the computational enhancements alluded before is in the realm of algorithmic 

game theory, Nisan et al (2007), in that we aim at providing algorithms to approximate 

solutions to game theoretic problems, within the ARA approach. The key contribution is to 

avoid the two step ARA procedure and try to accelerate computation. As a by-product, we 
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also provide APS approaches to approximate standard Nash equilibria solutions. Therefore, 

we explore how augmented probability simulation (APS) may be used to compute game 

theoretic solutions. APS is a powerful simulation based methodology used to approximate 

optimal solutions in decision analytic problems, see Bielza et al (1999). We start by 

defining an augmented distribution proportional to the product of the utility and the 

original distribution and, then, come out with a method to simulate from the augmented 

distribution. The mode of the marginal in the decision of the augmented distribution 

coincides with the optimal decision. Note that most of the emphasis in the ARA literature 

has been on foundational issues with little emphasis on computational challenges in 

complex problems as we may have to face in cybersecurity risk management. Therefore, 

we provide a complete outline of the role of APS for game theoretic computations.  

APS is based on treating the decision variables as random and converting the optimization 

problem into a simulation one in the joint space of both decision variables and random 

variables. Simulating from the augmented distribution of decision and states 

simultaneously solves for the expectation of the objective function and optimization 

problem: the marginal mode over the decision variable provides the optimal decision. The 

strategy is very general in that it can accommodate arbitrary probability models and non-

negative utility functions. 

We provide APS approaches to approximating game theoretic solutions for the sequential 

defend-attack problem, under common knowledge. They use the idea of a nested APS 

framework similar to folding back a tree. If the game theoretic solution is not robust, we 

need to address the issue. One way forward is to perform an ARA approach. For this, we 

weaken the common knowledge assumption. Again, we introduce a nested approach. 

This is fully described in Annex 6. 

Integration of risk scenarios and risk mitigation strategies through a Bayesian network 

Annex 7 uses an equivalent approach to the one presented in Section 3, except for the 

strategic assessment of attackers. The analysis builds on Bayesian networks, which provide 

a sound framework for probabilistic risk assessment by representing cyber threat scenarios 

as combinations of cascading events stemming from multiple attack trees. We, basically, 

build a model to quantify the risk scenarios and optimize the different mitigation 

strategies to identify the most cost-efficient one, considering budget and technical 

constraints or risk acceptability thresholds. We apply the model to a case study in electric 

power cybersecurity. 

 



  

Reference : CYBECO-WP3-D3.1-v2.0-CSIC 
Version : 2.0 
Date 

 

: 2018.04.23 

P 
Page :   30 

D3.2: Improved modelling framework for cyber risk management 
 

   

 

 

Figure 8: Influence diagram for the basic underlying model  

This framework can be introduced as a novel practice for assessing cyber risks and  

supporting risk-based decisions on resource allocation to protect systems. Possible 

extensions need to be investigated, such as modelling strategically the threat agent(s) 

through ARA or the analysis of the cyber resilience, meaning the ability of the system to 

continuously deliver the intended outcome despite adverse cyber events. 

The enhancement relies on the optimization algorithm. First, it selects the portfolios that 

fulfil the constraints (e.g., technical, acceptability threshold). After that, it selects the 

non-dominated portfolios, in the sense of the Pareto condition (a portfolio is Pareto-

dominant against other portfolio if and only if the former reduces one or more risks 

without increasing any other risk). Finally, it identifies those portfolios that minimize the 

cost of deployment. The selection of the optimal solution is through the computation of 

additional analysis such as enumeration or evolutionary algorithms. 

Annex 7 details tis developments with applications to cybersecurity in electric distribution 

systems. Some of the ideas in relation with handling constraints are incorporated into the 

Toolbox. 
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7 Transitioning to the CYBECO Toolbox 

The purpose of the model introduced in Section 3 is to provide the best security controls 

and insurance portfolio, given a budget or other constraints, and for a certain planning 

period, say a year. As argued in D3.1, it entails more work than in traditional cybersecurity 

frameworks. To facilitate its implementation, we build a methodology to implement a 

decision support system (DSS), the CYBECO Toolbox, for cybersecurity risk management 

which we fully describe in D5.2. On the supply side, the potential users of such DSS would 

be insurance providers, insurance brokers, or cybersecurity consultants wanting to 

facilitate an organisation a decision about how to better allocate its cybersecurity 

resources. Such companies would constitute the demand side of the system. On the whole, 

by better allocating resources and incentivising the adoption of security controls and 

insurance, we aim at helping to contribute towards a more cybersecure environment.  

Here we sketch how we have implemented the framework described in Section 3 with the 

aid of R routines to be adapted in the CYBECO Toolbox prototype. 

Software algorithms in R 

We have implemented as algorithms in R the following models: 

 The one in relation with the case study in the paper ‘An Adversarial Risk Analysis 

Framework for Cybersecurity’ (Annex 1 of D3.1). 

 The one related to case study in the paper ‘A Decision Support System for Cyber 

Risk and Cyber Insurance Management’ (Annex 1 of this deliverable). 

They consist of the following elements: 

1. Definition of R functions that model the different assessments over the 

organisation’s non-strategic beliefs and preferences (defender problem) as well as 

the random beliefs and preferences for the attacker (attacker problem). We also 

include the different decisions as variables. 

2. Definition of the inputs and outputs of these R functions so that they reflect the 

conditionality expressed in the involved influence diagrams. This way, we are able 

to calculate probabilities for different events and values modelled in the R 

functions. 

3. Implementation of algorithms that calculate the random optimal decision of the 

attacker (solution of the attacker problem) and obtain the security control and 

insurance portfolio that maximises expected utility (solution of the defender 

problem). These require the calculations mentioned in item 2. Additionally, an 

important parameter in these algorithms is the number of simulation iterations. 

4. Implementation of other algorithms to provide useful information for the risk 

analysis: conditional probabilities (i.e., probability of an event taking into account 
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the probability of its causing events) or conditional statistics (e.g., expected 

impacts taking into account the probability of its causing events). 

All of this is coded in several R scripts that generate tables with the relevant risk analysis 

information of the case.  

 

Integration into the Toolbox 

The CYBECO Toolbox of WP5 provides a set of risk analysis templates based on these 

scripts (details on its architecture and functions in D5.2). 

Ways of implementing the risk analysis cases 

From the software architecture point of view, we have defined three ways of 

implementing the risk analysis cases. Specifically: 

1. A risk analysis template that stores the analysis results in the Toolbox. In this case, 

we run the R scripts to generate tables that will be stored in the Toolbox, so that it 

is not necessary to run a simulation in R saving computational resources and time. 

The downside of this approach is that it is only useful for simple risk analysis or for 

consulting pre-calculated information as demo cases. 

2. A risk analysis template that performs simple calculations in the Toolbox. In this 

case, there is no interaction with the R scripts. The downside is that this approach 

is only useful for simple risk analysis. 

3. A risk analysis template that interacts with R. In this case, the Toolbox provides 

input parameters to R, and R runs the risk analysis script for a specific number of 

simulation iterations. Once the simulation finishes, R provides its output to the 

Toolbox. This allows for a more granular risk analysis but may require 

computational resources and time. 

Integration with the Toolbox 

Basically, the interaction between the Toolbox and the R algorithm is as follows: 

1. The CYBECO Toolbox obtains the input from the user through the user interface 

(e.g., the selection of assets, threats or security controls and parameters related to 

them such as their cost or value). 

2. The CYBECO Toolbox writes this input to a frontend input file in a format readable 

by the R algorithm. 

3. Additionally, the administrators of the Toolbox can provide additional input to the 

R algorithm through a backend input file (e.g., the size of the simulation, 

parameters for the utility functions). 

4. The Toolbox calls R to run the algorithm. The output of the algorithm is a table 

with the results of the analysis. 
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5. The Toolbox stores the results table, so that its users can consult the results 

through the Toolbox user interface. 

Annex 9 provides a skeleton of the scripts and some examples of the code which are fully 

integrated in the Toolbox as described in Workpackage 5. 
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8 Other modelling efforts 

We have outlined within Annex 1 other possible cyber insurance uses of our general model, 

with a view on the supply side of the Toolbox (cyber insurance providers). 

Cyber insurance design decisions 

The first one refers to cyber insurance design decisions and tries to answer questions such 

as: 

 Given the current cybersecurity environment and the features of an organisation, 

including its risk aversion, what would be the maximum  price that such 

organisation  would be willing to pay for a certain cyber insurance product. We may 

include constraints to reflect market conditions (what eventual competitors are 

doing). 

 We may extend the methodology to determine the minimum coverage acceptable 

given a price. 

 Finally, we may combine design decisions concerning price and coverage, via Pareto 

optimisation. 

Market segmentation 

As the computations involved are relevant, we may use the same general (regression) 

model to perform a market segmentation to have faster answers for customers. The idea is 

to run the model for a handful of customers and then try a regression model which relates 

features of the company and their decisions. We could use such approach to provide an 

initial solution to the company and, if necessary, perform a more detailed study. 
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9 Conclusions 

This deliverable has presented the improved CYBECO modelling framework for 

cybersecurity risk management. We have been able to move beyond current cybersecurity 

risk management frameworks in the following directions: 

 Unlike most of them, which are essentially based on risk matrices, we focus on 

detailed and careful analysis of likelihoods and multiple impacts of cyber threats, 

going beyond oversimplified ordinal models which may lead to inferior decisions. 

 Unlike most of them, we are capable of taking into account the intentionality of 

some of the cyber threats, using the framework of adversarial risk analysis, 

combined with other risk analysis models. 

 We incorporate various references to cyber insurance as a part of a cyber risk 

management strategy. 

 We include behavioural aspects of cyber risk managers (and attackers), including 

preferences and attitudes towards risk, through the utility functions included. 

 We detail the identification of cybersecurity objectives and how to integrate them 

into preference and decision-making models. 

 We outline how to cope with an eventual lack of data through structured expert 

judgement approaches. 

 We develop software algorithms that can integrate a sophisticated risk analysis case 

with a user-friendly CYBECO Toolbox aimed at informing SME users about the cyber 

risks they are facing and the potential palliative actions they can implement. 

We have focused on the use cases in WP 4, and presented graphically and analytically the 

model referring to the decision of a company about its security resource allocation, 

including an eventual cyber insurance product. Our approach, no doubt, entails more work 

than traditional cyber risk management approaches, however in many organisations the 

economic, environmental, political, stakes at play are so large at that it such additional 

effort would be worth being implemented. 

To facilitate application, we have moved in three directions. The first one refers to 

providing a generic cybersecurity preference model, based on identifying a set of generic 

cybersecurity objectives from a defender perspective, from which a risk manager may 

choose, as well as generic utility function which covers the above objectives (and caters 

for risk attitudes); a similar approach is taken for attackers. The second one refers to 

developing the CYBECO Toolbox (Work package 5), for which we provide a high-level 

description of the models to be implemented, the inputs required and the outputs 

produced. The third one sketches computational strategies that might alleviate the 

proposed initial computational scheme. 
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The core of this document has aimed at describing in an accessible manner the above 

developments, which are detailed in the enclosed technical appendices: 

 Annex 1: A decision support system for cyber risk and cyber insurance management 

 Annex 2: Cybersecurity preference models. The defender case. 

 Annex 3: Insider threat modelling: An adversarial risk analysis approach 

 Annex 4: Assessing Supply Chain Cyber Risks 

 Annex 5: Structured Expert Judgement Issues in a Supply Chain Cyber Risk 

Management System 

 Annex 6: Augmented Probability Simulation Methods for Non-cooperative Games 

 Annex 7. Risk-based Selection of Mitigation Strategies for Cybersecurity of Electric 

Power Systems 

 Annex 8: Adversarial Risk Analysis for Structured Expert Judgement Modelling 

 Annex 9: Skeleton and examples of the new R Routines 

 Annex 10: Recommendations from focus groups, advisory board and reviewers 

 Annex 11: Validation of ARA for belief formation 
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Annex 1: Paper: A decision support system for cyber 

risk and cyber insurance management 

 

 



A Decision Support System for Cyber Risk and Cyber Insurance

Management

Abstract

We describe a decision support system that facilitates cybersecurity risk resource allocation to an

organisation, including the determination of a cyber insurance. We provide first a descriptive scheme for

the cybersecurity risk management problem. We derive from it our basic underlying model. We then

sketch our system and provide a case study solved with it. We complete the paper with a description of

further uses of the system.

1 INTRODUCTION

Cybersecurity is increasingly perceived as a major global problem as reflected e.g. in the WEF [36] Global

Risk Reports. It is becoming even more important as companies, administrations and individuals get more

interconnected, thus facilitating the spread of cyber threats. Famous examples of recent cyber events include

the Target data breach, [22], in which a cyber attack to that company through one of its suppliers caused

the loss of 70 million credit card details, entailing major reputation damage; and, the NotPetya malware [16]

which affected thousands of organisations worldwide with an estimated cost of more than e8 billion EUR.

Given the importance of this problem, numerous frameworks have been developed to support cybersecur-

ity risk management. Some examples are ISO 27005 [19] or CORAS [21]. Similarly, several compliance and

control assessment frameworks, like ISO 27001 [20] or CCM [4], provide guidance about the implementation

of cybersecurity best practices. They have many virtues, particularly their extensive catalogues of threats,

assets and controls, and their detailed guidelines for the implementation of countermeasures to protect digital

assets. However, much remains to be done regarding cybersecurity risk analysis from a methodological point

of view: a detailed study of the main approaches to cybersecurity risk management reveals that they often

rely on risk matrices with shortcomings well documented in, e.g. Cox [7] and Thomas et al. [32]. Moreover,

with few exceptions like IS1 [25], those methodologies do not explicitly take into account the intentionality
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of certain threats, in contrast with the relevance that organisations, see [18] or [33], and legislation, e.g.

[17], start to give to targeted threats. As a consequence, ICT owners may obtain unsatisfactory results in

relation with the prioritisation of cyber risks and the controls they should implement, even more if we take

into account the increasing variety of threats, as well as the growing complexity of countermeasures for risk

management. This includes the recent emergence of cyber insurance products [35] for risk transfer purposes.

In [28], we have presented an approach to support cybersecurity resource allocation. When compared

with standard frameworks, our proposal provides a more comprehensive method leading to a more detailed

modelling of risk problems, yet, no doubt, more demanding in terms of analysis. We believe though that

the stakes at play are so high at so many organisations that this additional work should be worth the effort.

To facilitate its implementation, we present a generic actionable model from which we build a methodology

to implement a decision support system (DSS) for cybersecurity risk management at strategic level. The

objective of such DSS would be to provide the best portfolio of security controls and insurance for a certain

organisation, given a budget and other technical and legal constraints for the relevant planning period. On

the supply side, the potential users of such DSS would be insurance companies, insurance brokers, and

cybersecurity consultants aiming at facilitating an organisation a decision about how to better allocate its

cybersecurity resources. Such organisations would constitute the demand side for the system. On the whole,

by better allocating resources and incentivising the adoption of cybersecurity controls through insurance, we

would aim at helping to contribute towards a more cybersecure environment.

The structure of the paper is as follows. First, we introduce the basic underlying concept and model for

our DSS, which is an evolution of that in [28], with a more detailed, better structured and better typified

description of the cyber situation, as well as a better adaptation to cyber standards, in particular as reflected

by the Information Security Forum (ISF) [18] and the National Institute of Standards and Technologies

(NIST) [24]. We then describe how the model is specified and implemented in a DSS architecture. Next we

present a case study to which we apply the DSS. Finally, we provide a discussion of other uses of our system.

2 A GENERIC SPECIFICATION OF CYBERSECURITY RISK MANAGE-

MENT PROBLEMS

We start by providing an increasingly detailed view of the cybersecurity risk management problem. It will

lead to the definition of our basic underlying model in Section 3 and will also help us in defining an input

scheme to the DSS as well as specifying its architecture in Section 4.

In a nutshell, as reflected in Figure 1, the cybersecurity risk management problem refers to an organisation

which faces potential cyber threats that may have impacts on it. We aim at choosing an appropriate

2



cybersecurity portfolio to manage such risks as best as possible. The portfolio might include a cyber insurance

contract to eventually transfer risks.

Figure 1: Input to the DSS - categories.

As reflected in Figure 2, these elements can be further specified:

• The organisation is basically described in terms of its profile and assets, together with what we shall

call other organisational features.

• With respect to threats, we reflect the ISF [18] classification:

– Environmental threats: Incidents in external systems outside the control of the organisation.

– Accidental threats: Failures or human errors in systems within the control of the organisation.

– Non-targeted cyber threats: Cyber attacks that target organisations opportunistically, e.g., through

the most vulnerable target, or randomly.

– Targeted cyber threats: These differentiate from non-targeted ones because another organisation,

called attacker, devotes resources to specifically harm the defending organisation.

• Impacts will be separated according to:

– Insurable impacts, which may be partly covered by an eventual insurance contract.

– Non-insurable ones, which will not be typically covered by insurance contracts.

• Finally, the cybersecurity portfolio will include:

– Security controls, put in place by the organisation covering protection and prevention activities

as well as detection of and response to threats, partly reducing the likelihood of threats, partly

mitigating their impact.

– Recovery controls, typically implemented to respond and recover from the attacks, reducing their

eventual impact.

– Insurance contracts aimed at reducing the burden of the attacks, serving to transfer risks.
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As in ISF classification, we shall further separate the security controls between procedural (referring

to practices and procedures to enhance security), technical (concerning digital protection technologies)

and physical (dealing with physical protection means). The above instruments will typically have to

satisfy certain constraints in relation with available cybersecurity budgets, compliance requirements

and others.

Figure 2: Input to the DSS - subcategories.

Once we have found the relevant categories and subcategories, we may consider the elements within the last

ones. For this, we may take into account various catalogues from e.g. the methodologies included in Section

1, as exemplified in Figure 3, which includes just a couple of instances per category.
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Figure 3: Input to the DSS - subcategories with examples.

A final important defining issue refers to how do we link the corresponding assets with the relevant impacts

which will characterise cybersecurity risk management from the perspective of the incumbent organisation.

Conceptually, we just need to link the identified relevant assets with the corresponding identified relevant

impacts as reflected in Figure 4.

Figure 4: Linking assets and impacts

Clearly, the complexity of the cybersecurity risk management demands decision support tools to facilitate

decision making.
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3 BASIC UNDERLYING MODEL

Following the schematic description in Section 2, we formulate the basic qualitative model underlying our

DSS and describe how it may be solved once we obtain the required quantitative inputs.

3.1 Model formulation

We start by describing our generic qualitative model for cybersecurity risk management. The aim is to

support an organisation in its cybersecurity resource allocation process. Such organisation will be called

Defender. For the moment, we also distinguish one Attacker which will try to perpetrate attacks to the

Defender in pursue of certain goals.

We represent the problem as a bi-agent influence diagram (BAID) in Figure 5, with the terminology

used in Banks et al. (2015): the diagram includes oval nodes which represent uncertainties relevant for the

problem; hexagonal utility nodes which model preferences over consequences; rectangle nodes portraying

decisions modelled through the set of relevant alternatives at such point; and, finally, double oval nodes

representing deterministic factors relating the values of the antecessors of the nodes. The diagram also

includes arrows pointing to decision nodes (meaning that such decisions are undertaken knowing the values

of its antecessors) or chance and value nodes (meaning that the corresponding events or consequences are

influenced by the antecessors). Light coloured nodes designate issues relevant to just the Defender problem;

darker ones to the Attacker problem; stripped ones are relevant to both agents’ decisions. We detail now

the various nodes, which correspond with the elements presented in Section 2.
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Figure 5: BAID for the basic underlying model.

We start with a description of the organisation profile and features, which will be deterministic; we

designate them ft. We then identify the threats relevant to the organisation: we distinguish between

environmental, designated through e; accidental, called a; and non-targeted cyber threats, designated ntc, all

of them are modelled with uncertain nodes. Besides, we shall also consider targeted cyber threats, designated

tc; we model them as decisions associated with a different agent, the Attacker. Having identified the threats

and relevant assets, we may identify the impacts which we separate between insurable, designated ii, and

non-insurable ones, referred to as nii.

Then, the organisation may identify the actions that may be undertaken to mitigate the likelihood and/or

outcome of the threats. The three types of instruments, security (sec) or recovery controls (rec) and insurance

(i), are modelled with decision nodes. They will have (security and insurance) costs, which will be typically

deterministic. We designate them by cic. The above instruments may have to satisfy certain constraints.

With all the relevant elements in place, we may build the preference model for the Defender through her

utility uD, identified with a value node.

We turn now to the remaining elements faced by the Attacker. Note first that it perpetrates its attacks

with information concerning ft and sec. We then focus mainly on the detection and identification of the
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attacker, which we designate by d. Note that detection could depend on the controls implemented, but

we may ignore such fact for most attackers because they typically undertake the attack remotely and their

identification, in the sense of being able to prosecute them, depends more on their mistakes as attackers (e.g.,

the language they use in the code) than on the defender forensic capabilities. The exception are insiders,

who are more exposed to being detected (in this case, we link the security control portfolio with the insider

detection node). Finally, with all his relevant elements in place, we consider the preference model for the

Attacker through the utility uA of the Attacker through a value node.

The above may be seen as a basic template which may be simplified, for example, by eliminating the

rec node if it is not deemed relevant, or by including several Attacker blocks, as we illustrate in our case in

Section 4.

3.2 Model resolution

From the BAID describing the general cybersecurity problem, we derive two problems referred to as the

Defender and the Attacker problems, which we represent as influence diagrams, respectively, in Figures 6

and 7.

Security
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Figure 6: ID for the basic underlying model. Defender problem
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We describe now how we use them to guide model elicitation and solution.

Model specification. The first stage when solving the Defender problem, Figure 6, is the provision of the

quantitative models required at various nodes. We need to provide the following elements:

• At chance nodes, we define the relevant events and the corresponding conditional probability distribu-

tions. For example, at the environmental threat node we need to elicit the relevant events e that may

affect the organisation and the distribution p(e|sec, ft), which represents the probability that environ-

mental threat event e happens, assuming that the preventive portfolio sec has been implemented by

an organisation with features ft. The threats would be chosen from a catalogue and the distributions

from another one of relevant parametrised distributions as illustrated in Section 4.

• At deterministic nodes, we define the functions relating the values of the node with its antecessors,

if they exist. For example, at the security and insurance costs node we would have a function cic =

g(sec, rec, i), which represents the costs associated with the portfolios sec, rec and insurance i, typically

aggregated additively.

• At decision nodes, we must define the alternatives available at the corresponding decision point. For

example, at node Security control portfolio we must define the sec portfolios relevant to the organisation,

characterised by its features ft. The features induce which controls from an available catalogue are

relevant, from which we choose those consider incumbent. Based on them, we generate the portfolios

satisfying the relevant constraints.

• At the utility node, we must define the relevant preference model which, in our case, would be a

function uD(cic, ii, nii) adopting the general form in [6] outlined in Section 3.3.

The above assessments are standard and may be based on data and/or expert judgement, see e.g. [3], except

for p(tc|sec, ft) which models the beliefs concerning the targeted cyber threats given the security control

portfolio implemented, as it entails strategic thinking. We provide an approach to facilitate its assessment

through the Attacker problem.

The Attacker problem. The influence diagram in Figure 7 reflects the fact that the Attacker has means

to detect sec and ft.
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Figure 7: ID for the basic underlying model. Attacker problem

Since we typically have no access to the attacker, we shall have uncertainty about his beliefs and preferences

which we model as follows.

• At uncertainty nodes, we use random probability models to assess our uncertainty about the attacker

beliefs. For example, as we do not have the Attacker available to elicit pA(d|tc), we model our uncer-

tainty about such distribution through a random distribution PA(d|tc).

• At the value node, we must define the relevant preference model. As we do not have the attacker

available to assess the corresponding utility function, we model our uncertainty about it with a random

utility function UA(ii, nii, d, tc).

Then, given a portfolio of security controls sec and features ft, we find the random expected utility associated

with the attack tc through

ΨA(tc|sec, ft) =

∫
...

∫
UA(ii, nii, d, tc)PA(nii|tc, sec, rec, ft)PA(ii|tc, sec, rec, i, ft)PA(i|sec, rec, ft)

PA(d|tc)PA(sec|ft)PA(rec|ft, sec)PA(i|sec, rec, ft)PA(f) dnii dii di dd dsec drec df,
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and determine the random optimal attack by maximising it, which we may perform through computing the

random optimal attack

TC∗|sec, ft = arg max
tc

ΨA(sec, ft, tc). (1)

Finally, we estimate the required probability distribution through

pD(tc|sec, ft) = Pr(TC∗ = tc|sec, ft).

We then use such distribution to feed in and solve the Defender problem.

Model solution. Based on the above assessments, we associate with each feasible combination of security

controls and insurance products (sec, rec, ii) their expected utility and find the portfolio with maximum

expected utility through the following steps:

1. Remove the deterministic node cic, computing the utilities

uD
(
sec, rec, i, ii, nii

)
= uD

(
g(sec, rec, i), ii, nii

)
.

2. Compute the expected utility of the portfolio, removing the uncertainty nodes1

ψ(sec, rec, ii|ft) =

∫
...

∫
uD
(
g(sec, rec, i), ii, nii

)
pD(nii|tc, ntc, a, e, sec, rec, ft)×

pD(ii|tc, ntc, a, e, sec, rec, i, ft)pD(tc|sec, ft)pD(ntc|sec, ft)pD(a|sec, ft)pD(e|sec, ft) dnii dii dcic dtc dntc da de.

(2)

3. Remove the decision node i, registering the optimal cyber insurance, given the security portfolio:

i∗(sec, rec|ft) = arg maxψD(sec, rec, i|ft),

ψD(sec, rec|ft) = ψD(sec, rec, i∗(sec, rec|ft)|ft).

4. Remove the decision node rec, registering the optimal recovery controls, given the optimal security

controls:

rec∗(pec|ft) = arg maxψD(sec, rec|ft),

ψD(sec|ft) = ψD(sec, rec∗(sec|ft)|ft).
1We could reduce the uncertainty nodes one by one. However, in order to save space we remove them in batch.
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5. Remove the decision node sec, determining the optimal security controls, given the features of the

organisation

sec∗(ft) = arg maxψD(sec|ft).

The Defender’s optimal resource allocation would then be (sec∗(ft) , rec∗(sec∗(ft)|ft) , i∗(rec∗(ft), rec∗(sec∗(ft)|ft)).

3.3 Implementation

We now describe three important themes for the basic model required for the implementation in our DSS.

Preference models A key ingredient refers to the preference models used for the Defender and the

Attacker as we describe next.

Defender preference model In [6], we introduced a generic utility function for a cyber defender

whose form was strategically equivalent to

uD(c) = a(1− exp(ρDc) + b,

where c were the Defender costs. By making, uD(0) = 1, uD(c∗) = 0, uD(c = c∗/2) = p, with c∗ the worst

cost and p elicited from the decision maker, we have that for x =
1±
√

1−4p(1−p)
2(1−p) , we estimate the utility

parameters with ρD = lnx/c, a = 1
x2−1 , b = 1. In the particular case in which the impacts are economic

(m) and personal, measured through the number r of records exfiltrated, we specify it through

uD(m, r) = a
(

1− exp
(
ρD

(
m+ crr

)))
+ b

where we assessed cr = 825 EUR as the monetisation of an exfiltrated register. To fully adjust the utility

function, we determine the worst reasonable cost c∗ = m∗+825r∗, where m∗ is the sum of the maximum cost

of the impacts and the security budget and r∗ is the maximum number of records that can be exfiltrated.

We then need to assess the utility of c∗/2 and adjust the function 2.

Attacker preference model We provide now a generic model for the preference of an Attacker, based

on similar attributes. We consider first as attributes the costs (now gains) inflicted to the Defender by the

2In the case in [6], for a certain organisation, m∗ is estimated at e2.000.000 and r∗ is estimated at 5000, the worst cost

being e6.125.000. The best cost was c∗ = 0, for m∗ = r∗ = 0. Furthermore, for c1 =
1

2
c∗, we obtain u(c1) = 0.8.

The only valid root is x = 4, so that a = 0.066, ρ = 4.5267 ∗ 10−7 and b = 1, and the utility function is u(m, r) =

0.066 ∗
(

1− exp
(

4.5267 ∗ 10−7
(
m+ 825r)

))
+ 1. which we shall use as default utility function in our DSS when required
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Attacker defined through m = i–d–at, where i is the economic impact over the Defender, d are the costs if

detected and at are the costs of implementing the attack. As before, we aggregate them through c = m+e×r,

where e is the reputation monetisation, which would depend on the Attacker. Assuming that this one is risk

prone, we use the functional form

uA(c) = a× exp(ρA × c) + b.

For the attacker, we may estimate the worst c∗ and best c∗ values and associate with them utilities 0 and 1,

respectively. We thus have the system

a× exp(ρA × c∗) + b = 1,

a× exp(ρA × c∗) + b = 0.

We, then assess, for c = 0 its utility u leading to

a+ b = u.

The solution of the system comes from solving

b = u− a

ρA =
1

c∗
log
−b
a

a

(
u− a
a

) c∗
c∗

+ (u− a) = 1.

We may obtain an explicit expression if we make c∗

c∗
= −2 in which case we have the relation

(3u− 1)a2 + (2u− 3u2)a+ (u3 − u) = 0.

From it we deduce a, then b and, finally, ρA. Note though that, as we do not have available the attacker

to elicit u, we shall typically assess that u ∼ U(u1, u2) and we would obtain the corresponding distributions

over a, b and ρA, accordingly.

Multiple Attackers When building the cyber risk model, we shall typically consider several attackers.

From a graphical point of view, this corresponds to introducing replicates of the grey part of the influence

diagram in Figure 5 for each of the attackers. Then, assuming their conditional independence, given sec and
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ft, we would solve the i-th Attacker problem as in (1) to obtain pD(tci|sec, ft), i = 1, ..., k and use

pD(tc1, ..., tck|sec, ft) =

k∏
i=1

pD(tci|sec, ft),

which would replace pD(tc|sec, ft) in the Defender analysis in Section 3.2. We illustrate this in the case

study in Section 5.

Implementing the optimisation The optimisation process may be cumbersome and we discuss here

how we implement it. First, recall that we need to compute the expected utility ψ(sec, rec, ii|ft) based on

(2), which we rewrite as

ψ(sec, rec, ii|ft) =

∫
uD(x, θ)pD(θ|x)dθ = ψ(x), (3)

where x represents the cybersecurity portfolio (sec, rec, ii), θ represents the involved random variables

(nii, ii, cic, tc, ntc, a, e) and we ignore dependence on ft as it is fixed for this discussion. For each port-

folio x, we approximate by Monte Carlo the expected utility through

ψ̂(x) =
1

n

n∑
i=1

uD(x, θi),

where (θi)
n
i=1 is a sample of size n from pD(θ|x). Note that sampling from such distribution is simple by

forward sampling based on the corresponding influence diagram in Figure 6, according to the following al-

gorithm:

Given ft, sec, rec and i.

1. Generate e ∼ pD(e|sec, ft), a ∼ pD(a|sec, ft), ntc ∼ pD(ntc|sec, ft), tc ∼ pD(tc|sec, ft).

2. Generate nii ∼ pD(nii|tc, ntc, a, e, sec, rec, ft), ii ∼ pD(ii|tc, ntc, a, e, sec, rec, i, ft)

Note also that changing from portfolio x to portfolio x′ is facilitated through importance sampling [15] via

∫
uD(x′, θ)pD(θ|x′)dθ =

∫
uD(x′, θ)

pD(θ|x′)
pD(θ|x)

pD(θ|x) dθ,

so that

ψ̂(x′) =
1

n

n∑
i=1

uD(x′, θi)
pD(θi|x′)
pD(θi|x)

,

for the same sample (θi)
n
i=1 above. Thus, we would just need the initial sample.
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Finally, remember that we need to obtain the random optimal attacks to forecast the attacker’s actions.

We do this by computing

ΨA(tc|sec, ft) =

∫
UA(tc, β)PA(β|tc)dβ,

TC∗|se, ft = arg max
tc

ΨA(tc|sec, ft),

where β = (nii, ii, i, d, rec). We generate from such distribution by sampling from (UA, PA) and then solving

the corresponding optimisation problem, which is structurally similar to the Defender optimisation problem,

which we discuss now.

When the number of portfolios is sufficiently small, we just need to approximate the expected utility

at each portfolio and find the optimal one. When the number of portfolios is large, or we have continuous

portfolios, we may proceed in, at least, three ways:

• Evaluate the expected utility at some portfolios, approximate the expected utility through a regression

(meta)model [23]
̂̂
ψ(x) and optimise the regression surface to obtain the approximate optimal portfolio.

• Use an optimisation model which requires only functional evaluations, like the classic Nelder-Mead

algorithm [26], and let the algorithm run until a local optimal portfolio is detected.

• Use an augmented simulation algorithm [14], based on the artificial distribution h(x, θ) ∝ uD(x, θ) ×

pD(θ|x) sample from it through an MCMC approach until convergence is detected and, then, find the

approximate sample mode of the marginal distribution on the portfolios.

4 DSS ARCHITECTURE

We describe in this section the architecture of the DSS developed to implement the above framework for

cybersecurity risk management. Our toolbox adopts the form of an online calculator to guide the user into

analysing their current cybersecurity risk level and the optimal cybersecurity strategy for their specific needs,

including a cyber insurance product. The calculator is viewed as a multi-step online visually-enriched form

which asks the pertinent questions and finally offers the best option for the user. The tool has two modes:

one for SME3 users that are not experts in cybersecurity and another one for more expert users. They differ

in the information that they ask to the user but both are implementations of the proposed model. For such

purpose, the user selects and provides from various menus a parametric description of its problem.

The current implementation includes the options available in Table 1. It does not clearly exhaust all

possible controls or insurance products currently available in the market, all possible impacts and so on. For

3Small and medium enterprise
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Table 1: Table identifying the general components of the current CYBECO Toolbox model

Category Component Node

Assets
Number of computers ftcomputers

Number of servers ftservers
Number of personal identifiable information (PII) records ftrecords

ft

Other organisation features
Turnover of the organisation in Euros ftturnover

Number of employees ftemployees
ft

Environmental threats Fire efire e
Accidental threats Employee error aemperror a
Non-targeted cyber threats Malware ntcmalware ntc
Targeted cyber threats:
Attackers

Hacktivists (ha, hd, . . . )
Cybercriminals (ka, kd, . . . )

Targeted cyber threats:
Targeted Attacks

Targeted data exfiltration, hatargex and katargexf
Targeted data manipulation, hatargman and katargman

Targeted denial of services, hatargdos and katargdos

ha and ka

Attacker uncertainties Detection hd and kd

Impacts

IT infrastructure: damage to physical properties, iiphysical and niiphysical
IT infrastructure: business downtime, iidowntime and niidowntime

Personal information: records with personal information exposed, niirecexp
Personal information: privacy and security liability lost, iipiiliab and niipiiliab
Recovery and other post-incident expenses, iipostinc and niipostinc

ii or nii

Security controls

Boundary firewalls and internet gateways secboundary

Secure configuration secsecconf

Access control secaccess
Malware protection secmalprot

Patch management and vulnerability management secpatchman

Hazard protection sechazprot

sec

Insurance contracts
Property damage and personal injury insdamage

Data loss insdataloss
ins

Preferences
The defender utility node uD
The hacktivists utility node uH
The cybercriminals utility node uK

example, we only include fire within the environmental threats or employee error within accidental threats4;

we cover only the controls identified in the UK Cyber Essentials [34]. However, the toolbox is open to being

expanded by providing the appropriate information and augmenting the menus illustrated in Table 1.

Thus, the user needs to specify the information concerning the corresponding nodes as reflected in Figure 8,

by clicking or inserting the appropriate entries. Some of the items require the provision of certain parameters

as exemplified in Figure 9. Specifically, we have four types of parameters that populate the analysis:

• The first type refers to the parameters provided by the end-user of the toolbox, the supported SME

that needs a cybersecurity recommendation, through the user interface, since these parameters refer

to data about their organisation (e.g., number of employees or annual turnover). Table 2 summarises

these parameters with demonstrative values for the case study presented in Section 5. Note that the

first seven parameters are typical of the user whether the remaining ones would be typically fed from

a database of cybersecurity and cyber insurance products.

• The second one consists of those parameters provided by cybersecurity or risk analysis experts (e.g.,

utilities) or related to business but not displayed in the user interface. They can be defined by the

4To mitigate this, an ’Other threats’ option is included in the corresponding menu
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Figure 8: Screen to facilitate selection of relevant impacts.

analysts in a configuration file of the Toolbox. Table 3 summarises these parameters with demonstrative

values for our use case. The defender utility values are there presented may be seen as defaults ones,

based on our earlier comments in Section 3.3; for sophisticated users we could elicit such values.

Similarly, the utility values for the attacker may be seen as default values around which we describe a

uniform distribution. Again, with a sophisticated user we could use the procedure described in Section

3.3.

• The third group refers to parameters derived from the previous ones (e.g., the annualised costs of

security controls that derive from the OPEX and CAPEX). Table 4 summarises them.

• The fourth type refers to parameters or variables assessed for the models (e.g., probability of fire).

They are detailed in the corresponding sections below and built in within the system, but open to

being evolved as learning from data takes place.
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Figure 9: Screen to facilitate selection of assets and provision of parameters.
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Table 2: Table summarising parameters defined by end user, with the demonstrative values in our use case. Capital
expenses (CAPEX) refer to the cost of acquiring the product. In this use case, they are amortised in seven years.
Operational expenses (OPEX) refer to ongoing or subscription costs during a year. All costs in euros.

Parameter Definition

ftfacilities = 3147560 Monetary value of the facilities and their contents

ftcomputers = 20 Number of computers

ftservers = 14 Number of servers

ftrecords = 2000 Number of personal identifiable information records

ftturnover = 3346706 Turnover (year)

ftemployees = 20 Number of employees

constraintbudget = 8000 Security and insurance budget (year)

capexboundary = 1000
opexboundary = 700

Cost of boundary firewalls and internet gateways.

capexsecconf = 800
opexsecconf = 700

Cost of implementing a secure configuration.

capexaccess = 400
opexaccess = 250

Cost of implementing access control.

capexmalprot = 0
opexmalprot = 600

Cost of malware protection.

capexpatchman = 0
opexpatchman = 800

Cost of implementing patch and vulnerability management.

capexhazprot = 500
opexhazprot = 400

Cost of hazard protection.

cicdamage = 300 Insurance premium: Property damage and personal injury

coveragedamage = 0.9 Insurance coverage: Property damage and personal injury

cicdata = 200 Insurance premium: Data loss

coveragedata = 0.9 Insurance coverage: Data loss
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Table 3: Table summarising parameters defined by Toolbox analyst with demonstrative values in our use case.

Parameter Definition

hourratecybsec = 100 Hourly rate of cybersecurity team

amortisationcapex = 5 Number of years for CAPEX amortisation

workloadyear = 1500 Annual hours worked by an employee

ρD = −4.5267 × 10−7 Defender risk aversion coefficient

aD = 0.066 Defender utility parameter

ρH = 2.901 × 10−7 Hacktivists risk aversion coefficient

aH = 0.079 Hacktivists utility parameter

ρK = 3.402 × 10−7 Cybercriminals risk aversion coefficient

aK = 0.07 Cybercriminals utility parameter

Table 4: Table summarising parameters derived from those provided by the Toolbox.

Parameter Definition

productivityemployee = ftturnover
ftemployees

Productivity (annual income per employee)

productivityhour =
productivityemployee

workloademployee
Productivity (income per hour worked by employee)

valuepii = 825 Personal value of personal identifiable information record

liabilitypiirecord = 150 Liability cost per record (average value)

cic∗ = opex∗ + opex∗
amortisationcapex

Security control annualised cost

The system includes a help facility as well as a knowledge base with concepts in cybersecurity and cyber

insurance.

In such a way, the organisation gets defined through its features, assets, non targeted threats, its potential

attackers, targeted threats and attacker uncertainties, its relevant impacts, potential security controls and

insurance contracts and preference models. The Toolbox distinguishes between technical, procedural and

physical security controls in its display; however, this differentiation does not affect the structure of the

underlying influence diagram in Figure 5. It also includes constraints concerning security and insurance

budgets, only enabling portfolios satisfying such constraints.

Once the user concludes his selection, the DSS runs a simulation to forecast the likely actions of each of

the considered attackers as reflected in (1). Such forecasts then feed in the Defender problem which is run to

calculate the optimal choice of security controls and insurance as reflected in (3). When the optimisation is

completed, the tool informs the user about such optimal portfolio and the likely attacks. Figure 10 provides

an example of the recommendation in a specific case. Both the attackers’ and the Defender’s problems run

on parametrised models at various nodes. For example, we have a parametric model (4) which relates the

impact of cybersecurity controls on malware attack probabilities, as illustrated in Section 5.2.

In order to enhance the usability, visual appearance of outputs, and general user-friendliness of the DSS,

three types of user-oriented validations have been undertaken to collect relevant feedback. First, we have

designed and implemented a behavioural economic experiment with a sample of 2,000 potential users of the

calculator (workers in SMEs in managerial or cybersecurity related positions) in Germany, Poland, Spain
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Figure 10: Screen displaying the optimal portfolio.

and UK. In a gamified controlled environment, the participants were asked to define the cyber-protection

and cyber-insurance strategies of an SME using five different framings of the calculator output. Another

evaluation target has been the user navigation paths, offered by the toolbox, which were evaluated by two

focus groups with about 50 actual users, which helped to improve its visual aspect. Finally, a rich set of

use cases has been developed and applied as usage patterns to crosscheck the correct implementation of the

cyber risk analysis algorithms, one of which we next illustrate.

5 CASE STUDY

5.1 Introduction

We apply the framework described to a case study developed for the Toolbox. The cybersecurity risk

management problem refers to an organisation, an SME which we call the Defender, which faces potential
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cyber threats. We must support them in choosing an appropriate cybersecurity portfolio, possibly including

a cyber insurance. We consider a one-year planning horizon. We structure the problem through the multi-

agent influence diagram (MAID) in Fig. 11. As variations over the basic model in Figure 5, we consider

two targeted cyber threats from hacktivists ha and cybercriminals kf , represented with different colours;

moreover, we do not consider reactive controls. In this case, we consider all components in Table 1.

Figure 11: Case study as a MAID. White nodes correspond solely to the defender problem. Light grey nodes
correspond to the hacktivist problem. Darker grey nodes to the cybercriminal problem. Stripped nodes affect several
agents.
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5.2 Assessing the defender non-strategic beliefs and preferences

We first provide the quantitative assessment of the Defender beliefs and preferences not requiring strategic

analysis. We follow the order of the influence diagram, so that parent nodes are defined before their child

nodes.

Organisation profile and features. The organisation profile and features are described through

ft = (ftfacilities, ftcomputers, ftservers, ftrecords, ftturnover, ftemployees),
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and specified in Table 2 for our case study.

Modelling security controls. The security controls portfolio is described through the variables

sec = (secboundary, secsecconf , secaccess, secmalprot, secpatchman, sechazpot).

For each option, we have the binary choice of implementing it or not. We thus have 64 portfolios, which

could be constrained by the security and insurance budget. The precedence relation sec|ft is informative,

indicating that the Defender knows his profile and features before she selects the security controls.

Modelling insurance contracts. The insurance portfolio is described through

ins = (insdamage, insdataloss).

Each insurance product is defined by price and coverage, [29]. For all options, we have the binary choice of

implementing it or not. We thus have 4 insurance portfolios, which could be constrained by the security and

insurance budget. Note that we have included just one product per line of impact; should we have more than

one of them, we would introduce constraints to limit the acquisition of just one product per impact. The

precedence relation ins|ft, sec is informative, indicating that the Defender knows his profile and features

and their security control selection before the insurance choice.

Modelling security and insurance costs. The security and insurance costs are described through

cic = (cicboundary, cicsecconf , cicaccess, cicmalprot, cicpatchman, cichazpot, cicdamage, cicdataloss).

The precedence relation cic|sec, ins indicates that the cost is incurred only if the corresponding security

control or insurance product is implemented. Based on the parameters and formulas in Tables 2, 3 and 4

and using its annualised values, we have that

cic = (900, 960, 330, 660, 800, 500, 300, 200).

Introducing constraints. The security and insurance budget is an user-defined parameter that constrains

the security and insurance portfolio. In our example, such budget b is 8000, Table 2. Then, we exclude the

23



combinations of portfolios that exceed the budget

{(seci, insj) : cic|seci, insj ≥ b}.

Additionally, some insurance products may require the implementation of certain security controls. In our

case, the property damage and personal injury insurance requires the hazard protection control, whereas the

data loss insurance requires all controls to be implemented (i.e., boundary firewalls, secure configuration,

access control, malware protection and patch and vulnerability management), since they are considered

essential. Therefore, the following combinations of portfolios are excluded:

{(seci, insj) : sechazprot = 0 ∧ insdamage = 1},

{(seci, insj) : (secboundary = 0 ∨ secsecconf = 0 ∨ secaccess = 0 ∨ secmalprot = 0 ∨ secpatchman = 0) ∧ insdata = 1}.

Modelling environmental threats. In our case, the environmental threats are described as 5

e = efire.

The precedence relation e|ft, sec indicates that the materialisation of a threat into an incident could de-

pend on the security controls implemented and the profile and features of the organisation. Following our

assessment in [28], we have that there is a 2.2% probability of an industrial fire during a year in a typical

installation. Therefore, we model the number of annual fires through a Poisson distribution P(0.022).

Modelling accidental threats. The accidental threats are described as

a = aemperror.

Based on our assessment6, we have that there is a 5.92% probability of a human error during a year.

Therefore, we model the number of employee errors per year through a Poisson distribution P(0.0595).

5Recall that typically there would be more threats, but we leave just one for simplicity of exposition.
6A high percentage of cybersecurity incidents involve human errors (some reports estimating it at around 90%). However

these incidents also involve malware or hacking. The only indicative figure we have found [27] is that around 47% root causes
of data breaches are malicious, 28% human errors and 25% system failures. The Eurostat 2010 survey on Digital Economy
and Society statistics (https://ec.europa.eu/eurostat/web/digital-economy-and-society) indicates that around 1% of small
enterprises (10-49 employees) experienced ICT related security incidents resulting in disclosure of confidential data in electronic
form by employees (whether intentionally or not) and that 1% due to intrusion, phishing attacks and similar. Taking the
previous percentages of root causes, we infer that around 0.37% of the disclosures (2% per year) come from human errors,
i.e., 0.74% per year. The survey does not provide data about unintentional destruction or unavailability of data by employees,
but assuming the same proportions as in data disclosure, we assess a 2.22% for unavailability and 2.96% for destruction or
corruption. Adding these three probabilities we obtain the final percentage of 5.95%.
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Modelling non-targeted cyber threats. The non-targeted cyber threats are described as

ntc = ntcmalware.

The precedence relation ntc|ft, sec indicates that the materialisation of a cyber threat into an incident could

depend on the security controls implemented and the profile and features of the organisation. Based on our

assessment 7, we estimate that there is a 5.28% probability of malware during a year.Additionally, we have

to take into account the effects of the cybersecurity controls8, through a risk reduction coefficient, red, which

we describe through

red = 0.34+0.66(1−0.13secpatchman)(1−0.5secboundary)(1−0.5secsecconf )(1−0.5secaccess)(1−0.9secmalprot).

(4)

Finally, we model the number of malware attacks through a Poisson distribution P(1, 0.0528× red).

Modelling impacts on the assets. The non-insurable impacts on the assets are described as

nii ∼ (niirecexp, niidowntime, niipostinc),

whereas the insurable ones are

ii ∼ (iiphysical, iipiiliab),

as expressed in Table 1. The precedence relation ii|ft, ins, e, a, ntc, ha, ka indicates that the impacts could

be affected by the organisation features and profile, their insurance choice and the threats (including the

adversarial ones that we assess in Sec. 5.3).

We model the damage to physical properties as

iiphysical ∼ (efire, sechazprot).

Following our assessment in [28], we assume that the fire duration durationfire depends on whether the

7Malware represents 34.1% of attacks (37.7% , if we exclude attacks classified as unknown). From the Eurostat Di-
gital economy and society data we have that 14% of small enterprises experienced security incidents excluding disclosure
from employees, and assess a probability of malware infection of 5.28% per year. Data obtained from the Hackmagedon
(https://www.hackmageddon.com/category/security/cyber-attacks-statistics/) portal specialised in information security
statistics

8An assessment of the cybersecurity essentials against a set of commodity-level attacks [31] indicates that patch management
was effective 87% of the time, whereas anti-malware only 10%. No percentage was provided for the other controls, so we assume
an effectiveness of 50%. Additionally, commodity-level attacks are the majority but not all of the attacks, specially against
small business. We assume in this case that at least two thirds are commodity-level and one third is bespoken or based on
sophisticated tools
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hazard protection measures are implemented or not. Specifically, if sechazprot = 1, durationfire is described

through a Triangular distribution T ri(0.8, 63, 10), whereas if sechazprot = 0, durationfire is a Gamma

distribution Γ(0.85, 0.01099). Based on our assessments9, the fire impact on facilities is modelled through

iiphysical = 0.8ftfacilities min
(

1,
durationfire

60

)

When it comes to exfiltrated records, most models apply to certain topologies of networks and computers.

Our model just asks for the number of computers and servers and is applied to an SME (and we assume

that it is not extremely difficult to hijack computers and servers once one of them has been hacked from the

exterior). Based on that, for each type of attack we model the exfiltration impact as follows:

• For the targeted exfiltration (hacktivists) niirecexp|hatargexf
∼ U(0, ftrecords), if hatargexf = 1 (similarly

for the cybercriminal targeted exfiltration).

• For malware10, niirecexp|ntcmalware
= 0.4xrecexp ntcmalware, xrecexp ∼ U(0, ftrecords), if ntcmalware >

0.

• For the error11, niirecexp|aemperrror
= 0.1243 yrecexp aemperror, yrecexp ∼ U(0, ftrecords), if aemperror >

0.

Each of these threats could expose a different number of records. Although this involves that some record

could be exposed in various attacks, we assume that the final number of records exposed comes from the

maximum of the previous incidents, i.e.

niirecexp = arg max
(
niirecexp|hatargexf , niirecexp|katargexf , niirecexp|ntcmalware, niirecexp|aemperror

)
.

A derived, and potentially insurable, impact is the liability due to the records exposed. This relates to

the liability per record exposed12, i.e.,

iiliability = liabilitypiirecord × niirecexp
9Typically, 20 % to 30% of the real estate value corresponds to the land value. Should the building be destroyed, this value

still remains. Additionally, we assume that the offices of an SME (several hundreds of square meters) would degrade in less
than an hour, based on our assessment [28] in which we elicited from experts that a fire would degrade a typical industrial
warehouse in less than two hours.

10Malware attacks affecting confidentiality represents around 40%, based on the Eurostat Digital economy and society data.
11Based on the data we describe in the footnotes when modelling accidental threats, these threats represent 12.43% of

cybersecurity incidents caused by accidental human errors.
12For this value we take the demonstrative figure of e150 for liabilitypiirecord, based on an study that estimated the cost of

data breach per record in $ 143 in Italy and $ 195 in Germany [27]

26



For business downtime, we first calculate the downtime for each of the threats that can cause them as

niidowntime|threat = xdowntime|threat × occurrencesthreat × ftemployees × productivityemployee,

where threat could be any of the threats, except the targeted exfiltration as these do not usually cause down-

time. The downtime caused by a threat is modelled as xdowntime|threat ∼ U(0.5ydowntime|threat, 2ydowntime|threat),

where ydowntime|threat is the average downtime in hours per threat occurrence13. We finally aggregate all

the downtimes caused by different threats as

niidowntime = niidowntime|fire+niidowntime|emperror+niidowntime|malware+niidowntime|targexf+niidowntime|targman.

For the post incident cost, we follow a similar approach to the business downtime: we first calculate the cost

for each of the threats based on the cybersecurity experts rate as

niipostinc|threat = xpostinc|threat × hourratecybsec,

where threat could be any of the threats above. The post incident cost caused by a threat is modelled

through xpostinc|threat ∼ U(0.5ypostinc|threat, 2ypostinc|threat), where ypostinc|threat is the average hour to solve

a cyber incident in hours per threat occurrence14. We finally aggregate all downtimes caused by the different

threats as

niipostinc = niipostinc|emperror + niipostinc|malware + niipostinc|targexf + niipostinc|targman + niipostinc|targdos

Defender utility. We use the utility function defined in [6], and revised in 3.3. In our case,

m = cic+ iiphysical + iidowntime + iipiiliab + iipostinc + niiphysical + niidowntime + niipiiliab + niipostinc,

r = niirecexp.

We use the parameter settings in Table 3, therefore using our default utility function.

13Following expert consultation, we have that the average downtime are 28 hours for the fire, 2.5 for the employee error or
the malware, and 10 for the targeted denial of services or targeted manipulation.

14Following reports [1], we have that the average hours of postincident work are 55.2 for the targeted exfiltration, 61 for the
targeted manipulation, 20 for the targeted denial of service, 16.8 for the accidental error and 14.6 for the malware.
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5.3 Assessing the Hacktivists’ random beliefs and preferences

We assess now the random judgements available from the first Attacker group.

Targeted attacks. This decision node models whether the hacktivists undertake any of their attacks

against the Defender, specifically

ha = (hatargexf , hatargman, hatargdos).

For all the options, they have the binary choice of undertaking them or not. Thus, they have 8 at-

tack portfolios. The precedence relation ha|sec is informative, indicating that the hacktivists observe the

security controls from the Defender. In general, we have p(ha|sec) = p(haresult|sec)[hadecision|sec], where

hadecision|sec designates the hacktivist decisions and p(haresult|sec) = redattacker is the probability that the

hacktivists are successful in their attack. This is conceptually equivalent to the risk reduction coefficient

s defined when we modelled the non-targeted cyber threats. However, in this case, it represents the belief

of the attacker about his success in case he observes security controls. If the hacktivist does not observe

security controls then redattacker = 1; otherwise, we add uncertainty modelling redattacker as an uniform

distribution15 U(0.016250.5).

Impacts. We base our estimate on that of the Defender nodes (Sect. 5.2), considering only the impacts

caused by the hacktivists and adding some uncertainty through random probability distributions.

Hacktivists detection. This represents the chance of the hacktivists being detected, given the type

of attack executed. The precedence relation hd|ha indicates that the detection depends on whether the

hacktivists launch an attack

hd ∼ (hatargexf , hatargman, hatargdos).

Following our assessment through expert judgement 16 in [28], we model the costs of attacker detection hd

through hdprobability hdcost, where hdprobability ∼ B(1, 0.002) and hdcosts ∼ U(300000, 450000).

15Based on what we described when assessing the effectiveness of the security controls against malware, the simplest situation
for the attacker is when there is only one security control with a 50% effectiveness, whereas the hardest situation would be
when all the security measures are in place, providing a combined effectiveness of 98%

16We have that detection and identification of the attacker has a probability of 0.2%, and thus p(hd|ha) = 0.002(hatargexf +
hatargman + hatargdos), indicating that the attacker has more chances if he decides to undertake several attacks. Taking our
estimations in [28], we have that the hacktivists may face legal costs, penalties and indemnities, around the expected cost
of detection for the hacktivists are around e380.000. To add some uncertainty, we model them as a uniform distribution
U(300000, 450000).
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Hacktivists utility. We tke the utility function defined in Section 3.3 where m is the monetary impact

caused to the defender, minus the detection costs and the costs of undertaking the attacks (e800 for the

exfiltration, e1250 for the manipulation and e600 for the denial of service). We also have that r is the

impact on personal rights, monetised with e = 825, ρA is the risk proneness coefficient and a and b are

parameters used to scale the utility in [0,1].

We use the parameter settings defined in Table 3 so that the utility function is

uD(mdefender, rdefender) = 0.066 ∗
(

1 + exp
(

4.5267 ∗ 10−7
(
mdefender + 825rdefender)

))
+ 1

with uncertainty around a, b and ρA.

Simulating the Hacktivists’ problem. As described in Sect. 3.3, we simulate from the hacktivists

problem to forecast his actions and estimate the probability distribution p(ha|sec) of random optimal attacks

by the hacktivist, represented in Table 5.

Table 5: Conditional probability table generated by simulating the hacktivists problem. It displays the attack
decision probabilities, conditional on the protection implemented by the defender.

Does the defender
implement any

technical security
control?

Probability of
hacktivists

deciding to launch
targeted exfiltriation

Probability of
hacktivists

deciding to launch
targeted

data manipulation

Probability of
hacktivists

deciding to launch
targeted

denial of service

Yes 50.3% 73.8% 72.5%

No 52.4% 89.1% 95.7%

5.4 Assessing the Cybercriminals’ random beliefs and preferences.

We proceed in a similar fashion as in the hacktivists problem. All the assessments and figures are equivalent

(they can execute the same attacks and both have the same skill levels) except some costs that increase

due to their organisational nature17. The result of the simulation is the probability distribution p(ka|sec) of

random optimal attacks by the cybercriminals, represented in Table 6.

5.5 Solving the defender problem

After defining the non-strategic beliefs of the Defender and simulating the attackers’ problems, we proceed

to find the optimal portfolio of security controls and insurance for the Defender, as described in Sect. 3.3,

17Since they are a cybercriminal organisation they may face additional costs if detected. Taking our estimations in [28], we
have that they may face legal costs and indemnities such as the hackers, but also reputational costs and suspension costs since
most of the time cybercriminal organisations have a legal façade as a legit business. In this case the cost of detections are
around e2.430.000 but to add some uncertainty we model them as a uniform distribution U(2000000, 3000000).Additionally the
cost of undertaking the attacks are a higher (at least double) as they operate as a business.
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Table 6: Conditional probability table generated by simulating the cybercriminals problem. It displays the attack
decision probabilities, conditional on the protection implemented by the defender.

Does the defender
implement any

technical security
control?

Probability of
cybercriminal

deciding to launch
targeted exfiltriation

Probability of
cybercriminal

deciding to launch
targeted

data manipulation

Probability of
cybercrimianl

deciding to launch
targeted

denial of service

Yes 51.6% 71.4% 70.5%

No 52.9% 87.9% 94.2%

obtaining the the expected utility of each of the portfolios from which we can obtain the best one and

establish a ranking among them (Table 7).

Table 7: Five best portfolios of security controls and insurance based on maximising the Defender’s expected utility.

Boundary
firewalls

and
Internet
gateways

Implement
secure

configuration

Implement
access
control

Malware
protection

Implement
patch and

vulnerability
management

Hazard
protection

Insurance:
property
damage

and
personal
injury

Insurance:
data loss

Ranking
based on

maximising
expected

utility

Yes Yes Yes Yes Yes Yes Yes Yes 1
Yes Yes Yes Yes Yes Yes Yes No 2
Yes Yes Yes No Yes Yes Yes Yes 3
Yes Yes Yes No Yes Yes Yes No 4
Yes Yes No No Yes Yes Yes No 5

5.6 Sensitivity analysis

As discussed in [28] we could perform sensitivity analysis to check the robustness of the proposed cyberse-

curity portfolio by observing the impact of perturbations on the output of the analysis.

6 ADDITIONAL USED

We describe additional computational problems that may be based on our models and are very useful for

cyber insurance providers.

6.1 Cyber insurance product design

A major decision for insurance companies is to determine the price and coverage that we put to a cyber

insurance product. [29] provide a description of such decision, which is frequently driven by the market,in

the sense that companies do not want to deviate too much from what competitors do.

We start with the pricing decision. Recalling (3), we rewrite the optimisation problem for the company

as

max
x∈R

∫
uD(x, c(ii), θ)pD(θ|x)dθ,
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where R = [a, b] is the relevant price range, as suggested by the prices of the competitors, and x = (sec, rec, ii)

and we make now explicit the dependence of the decision through the utility including the insurance price.

For a given insurance product that we are interested in selling to the specific organisation considered, we

would consider the maximum price c(ii) for which the company would include such insurance product within

its optimal portfolio. We could undertake this computation by searching in a grid, starting from the right

extreme b, checking whether for such price the optimal decision includes the insurance product and, if so,

move to the next cheaper price in the grid, until it is not included.

For a given price, we could perform a similar approach to design the coverage of the insurance product,

looking for the minimum coverage given the price that the company would be willing to accept to include

the product in the portfolio. The approach would be similar, but now we make explicit the dependence

pD(θ|x, p(ii)) of the impacts on the coverage.

Finally, we could explore Pareto efficient insurance products by combining the above procedures simul-

taneously dealing with price and coverage.

6.2 Market segmentation

Another important problem refers to market segmentation. By this we mean determining clusters of organ-

isations, defined by their features ft and risk aversion coefficient ρ, which would choose similar cybersecurity

portfolios. This would facilitate marketing operations, automate computations and partly relieve from the

need to perform very expensive simulation-optimisation problems.

This may be undertaken as follows. For a set of organisations characterised by {fti, ρi}mi=1, we would

compute with our system their respective optimal decisions xi. Based on such data, we learn the parameters

ŵ of a model xi ≈ ψ(ft, ρ, w) and use ψ(ft, ρ, ŵ) to forecast the decision to be made by companies. We

could implement the above approach for the whole portfolio x or for parts of it, in particular, the cyber

insurance component in them.

7 DISCUSSION

We have provided a conceptualisation of the cybersecurity risk management problem leading to a model

and a DSS that supports its implementation. Key elements are the consideration of adversarial threats, the

inclusion of cyber insurance within the security portfolio and the use of parametrised models for beliefs and

preferences. With this system, mainly we may support an organisation seeking advice on which portfolio

of security controls and insurance to implement. The current version of the system just illustrates a few of

the threats, impacts and attacker types. However, it is open for future extensions. We mentioned above
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the various validations undertaken. In particular, our tests showed that the potential users of the CYBECO

toolbox use it as an information source to make such a decision in a better informed manner.
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Cybersecurity preference models. The defender case

Abstract

We have introduced a model for cybersecurity risk management which facilitates
an organisation to decide which countermeasures to adopt, possibly including a
cyberinsurance. To facilitate its implementation and the development of the corre-
sponding decision support system, we introduce a generic model for the preferences
and risk attitudes of the organisation undertaking the analysis regarding the cy-
bersecurity objectives.

1 Introduction

At present, all kinds of organisations are critically impacted by cyber threats, from
private corporations to governmental facilities, going through critical infrastructures
(Andress and Winterfeld, 2013). Risk analysis is a fundamental tool to help managing
such problems (Cooke and Bedford, 2001). With it, organisations can assess the risks
affecting their assets and what security controls should be implemented to reduce the
likelihood of such threats or their impacts, in case they take place.

We have proposed a rigorous framework for risk management in cybersecurity (Rios In-
sua et al., 2019) which overcomes several of the defects in current standards by mod-
elling cyber risks in more detail and including adversarial threats and insurance. The
framework emphasises adversarial aspects for better prediction of threats, mitigates lack
of data through structured expert judgement techniques and includes cyber insurance
within the risk management portfolio. Although we included a template case study, its
implementation may entail extensive work within large organisations. Towards the aim
of facilitating a decision support system to aid in implementing our cybersecurity risk
analysis framework, we propose here a general cybersecurity preference model for the
organisation, the ICT owners undertaking a cybersecurity risk analysis, which we call
Defender. Specifically, our aim is to provide:

• A generic tree of potential cybersecurity objectives for ICT owners. We describe
potential attributes corresponding to each objective. Its purpose is to support the
identification of all potential impacts of cybersecurity incidents in terms of relevant
stakeholders’ assets.

• A description of relevant models to forecast the outcomes in the involved attributes,
when a threat takes place.

• A generic multi-attribute utility function to translate the previous objectives in
quantified assessments of stakeholders’ preferences and risk attitudes.
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Our approach is inspired by earlier work in counter-terrorism, homeland security, avia-
tion safety risk management and cybersecurity financial risk management. Specifically,
Keeney (2007) identifies and structures preferences in antiterrorism analysis from the
perspective of a government and we aim at a similar purpose in the cybersecurity domain
from the perspective of a general organisation; Keeney and von Winterfeldt (2011) pro-
vided a value model to assess homeland security decisions and we pursue a similar aim
to assess cybersecurity decisions, both in private and public administrations; Rios Insua
et al. (2019) provide a value model for aviation safety at a state agency, including models
to forecast and assess the impacts in aviation safety events, and our purpose is for cy-
bersecurity events in a general organisation; Eling and Wirfs (2019) provide models for
some of the cybersecurity financial costs and we complement them with other financial
and nonfinancial impacts.

The rest of the document is structured as follows. We first provide a generic objec-
tive tree for cybersecurity risk management; ideally this would be shown to cybersecurity
risk managers who would pick the relevant objectives for their problem at hand or, al-
ternatively, use it to complete their own cybersecurity objectives tree. For each of the
objectives, we provide potential attributes that measure or estimate objective achieve-
ment. We also describe several forecasting models for cybersecurity objectives, with a
focus on cases in which there is little available incident data. Once the objectives and
their attributes are specified, we can build a utility function to build up the model. We
provide a generic model for this purpose, in which its parameters are obtained through
a series of questions that would need to be addressed by the cybersecurity risk manager.
We include an illustrative example based on the case study in our template.

2 Cybersecurity risk management objectives

Cybersecurity occurrences may entail very negative consequences in terms of costs, loss
of reputation or even, in some cases, casualties. We track them through performance
measures that we want to optimise, which we designate objectives. Through risk man-
agement, we aim at implementing treatments, possibly including a cyber insurance, to
perform optimally with respect to such objectives, which will depend on the incumbent
organisation. They will typically vary from state organisation to private ones and, among
these, will differ for, say, a standard small enterprise, an Information and Communica-
tion Technology (ICT) based small enterprise, a medium enterprise or a large company.
They may also vary in different countries and domains (e.g., air traffic management,
healthcare, manufacturing). With each objective we associate, at least, one attribute
with which to assess it.

We present here a generic list of objectives from which an organisation may choose
when undertaking their cyber risk management process. The context of our problem is
an organisation that aims at introducing a cyber risk management strategy, including
possibly a cyberinsurance, to improve cybersecurity. Our framing for this problem may
be seen in detail in Rios Insua et al. (2019).
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2.1 General concepts

As Brownlow and Watson (1987) points out, structuring objectives in trees can help
a risk manager (RM) overcome the cognitive overload brought by the volume of infor-
mation which needs to be integrated into the solution of large, complex issues as in
cybersecurity risk management. An analyst can work with RMs to build such objec-
tive hierarchy or tree in several ways, as detailed in Keeney (1992) and Clemen and
Reilly (2013), including a brainstorming process or a questionnaire to identify the rele-
vant objectives. There are several requirements that these must meet if they are to be
useful for decision support (Keeney and Gregory, 2005): comprehensive, covering the
whole range of relevant consequences for the incumbent organisation; measurable, either
objectively or subjectively; non-overlapping, two objectives should not measure similar
impacts; relevant, in the sense of being capable of distinguishing between alternatives;
unambiguous, having a clear relationship between impacts and their description using
the corresponding objective; understandable, the objective should be presented so that
a reader reasonably familiar with risk or business can easily comprehend it.

The lowest tree nodes provide a series of dimensions, say q of them, which may be used
to describe the consequences of alternatives, cybersecurity policies in our case, and uncer-
tain scenarios. Each of these objective scales may be quantified in an attribute, allowing
each consequence to be represented as a vector of attribute levels c = (c1, c2, . . . , cq). We
distinguish three types of scales.

• A natural attribute gives a direct measure of the objective involved and is univer-
sally understood. An example of this, typical with cyber incidents to SMEs, are
costs in relation with ICT support services that repair, reinstall or recover desktop
computers and measured in EUROs.

• Constructed attributes are created for a specific decision context and are not uni-
versally understood. They are based on an artificially built ordinal scale, say 1 to
10. For example, in the case of image loss, level 1 could be associated with a case
of minimal impact, e.g., a cyber attack with no loss of image even internally at the
organisation. Level 10 could be associated with a maximum impact accident and a
full compromise of the information assets of the organisation, like the exposure of
thousands of private or personal information about customers, with appearance in
global media. Henceforth, we would associate each of the levels with a qualitative
description of severity with respect to image.

• Proxy attributes are used because of its perceived relationship with the objective,
when no natural attributes are available and constructed scales are deemed too
ambiguous. Variations in a proxy attribute are perceived to correlate with the
issue of concern. For example, in online businesses the proxy attribute website
downtime usually correlates with lost online sales.

2.2 Initial objectives

A popular approach to describing cybersecurity objectives is in terms of the information
security attributes of confidentiality, integrity and availability (Mowbray, 2013). How-
ever, such objectives may be difficult to interpret from a business perspective: they are
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useful for expressing security from an information security perspective, in which ICT
systems are described in terms of sets of pieces of information that are stored, processed
or transmitted. We can think of this as the technical perspective through which we can
express cyber risk. Yet the business perspective focuses more on assets and activities
relevant for the organisation and its stakeholders; this is even more relevant if we re-
flect the general principles introduced above: objectives should cover the consequences
over relevant organisational assets and activities expressed in variables directly used, or
understandable, in the language of the incumbent organisation.

Some cybersecurity frameworks provide catalogues of concepts analogue to our ob-
jectives, mostly those addressing business impact analysis in cybersecurity, including
ETSI GS ISI 002 v1.2.1 (2015), ISO 22317 (2015)1, OWASP business impacts (2017),
the OECD cyber losses types (2017), the ENISA Information Package for SMEs (2007),
the ENISA report on ICT business continuity management for SMEs (2010), SABSA
(2009) or MAGERIT (2012). We also include the list of impacts identified in Hubbard
and Seiersen (2016) and the CYBECO deliverable on defining cyber insurance scenar-
ios (Musaraj et al., 2018). They depict a few general categories of impacts (legal and
regulatory, productivity, financial reputation and loss of customers) with some examples
or subcategories. However, they do not meet well the requirements earlier established.
Most of them provide a list of recurrent or important business impacts rather than a
comprehensive list encompassing less typical impacts (e.g., cyber attack physical im-
pacts). Similarly, they provide types of objectives or impacts that somehow overlap:
most of them affect monetary objectives and, thus, some categorisation among them is
recommended. For instance, some costs affect specific assets (e.g., activity interruption),
whereas others are more general (e.g., competitive advantage, reputation).

Of course, creating a comprehensive and non-overlapping set of objectives may have
disadvantages, namely, the addition of more concepts. One example in business terms
is that income generation is a clear and main objective for companies to make money
through sales. However, companies have alternative means to earn money, which may
be even more relevant in other types of organisations such as NGOs, including grants,
investments or licenses. A second example refers to the emerging and potential impacts
of cyber risks involving physical and psychological aspects. Thus, third-party impacts
such as health and environment should be also taken into account.

As a consequence, our approach is to list objectives and impacts in cybersecurity
and sort them in a hierarchy of objectives in a more comprehensive, measurable, non-
overlapping, relevant, unambiguous and understandable manner. As mentioned, com-
prehensiveness and non-overlapping involve, mostly, careful addition of novel concepts.
Relevance and understandability are more related with translating cybersecurity im-
pacts from the confidentiality, integrity and availability realms to another one focused
on assets, activities and stakeholders.

Besides the existing lists of cybersecurity impacts, the main influences on ours come
from asset management and law. The first discipline, ISO 55000 (2014) on asset man-
agement in general or ISO 19770 for ICT assets (2015), helps us in conceptualising the
different status that an asset could attain, so that engineers could characterise how an
asset affects a system or the organisation in terms of reliability and predictability. The

1Standards in the ISO 22300 family are the continuation of BS 25999 (2007), one of the most popular
standards in business continuity management.

4



second influence comes from law, in particular, the distinction between damages on prop-
erty (economic or pecuniary) and persons (general or non-pecuniary). This facilitates
the distinction between objectives that can be measured or evaluated in monetary terms
(directly or through estimation) and others that are non-monetary and, thus, need spe-
cial consideration when it comes to their evaluation. It also helps with the distinction
between the objectives’ owners (e.g., health and environmental damages are suffered by
third parties besides the monetary, legal or reputational consequences that such damages
could cause to the organisation).

We thus have developed a generic tree of cybersecurity objectives for a generic or-
ganisation, summarised in Fig. 1 and aimed at reaching the properties mentioned in
Section 2.1. When it comes to comprehensiveness, we have evaluated existing categories
of impacts to, at least, have categories that cover them. Solving the overlapping prob-
lem would mean creating more abstract concepts. We think that this question should
be actually addressed when performing the actual risk assessment. Should a risk involve
impacts on several categories, it would be necessary to check that impacts included in
one category are not included in different ones. We have also tried to bring more general
terms for the objectives rather than more domain-specific (e.g., organisation instead of
business). This may add a little more ambiguity and less understandability compared
to domain-specific IT or business categories, but it provides a more comprehensive ap-
proach.

Figure 1: Cybersecurity objectives. Green, assessed in monetary terms; blue, not directly
measurable in monetary terms (e.g., health, environmental); grey, with both types of
sub-objectives.

The rest of this section describes in some detail the rationale behind such objectives.
Note that some of them refer to impacts that may last several years and, for instance,
those measured in monetary terms should be dealt with net present values (NPV)
(French and Rı́os Insua, 2000). We also provide an appendix that maps some of the
previously mentioned catalogues to these cybersecurity objectives. As expressed in Fig-
ure 1, all objectives refer to minimisation, for example when mentioning impact to the
organisation we understand minimising impact to organisation. Finally, unless explicitly
mentioned, the objectives will be expressed in monetary terms.
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2.2.1 Impact to the organisation

This objective consists of the following sub-objectives:

• Operational costs. We refer to those costs related with the assets and activities
involved in the organisation’s operations, i.e., the area responsible for producing
goods or delivering services, the cost of degradation, malfunction, abuse, unavail-
ability, elimination, recovery and unrecoverability of their assets and activities.
We focus on assets such as software, ICT devices, documents, and equipment; and
activities such as serving food, delivering merchandise, writing a report, or sup-
porting administrative acts with citizens. All of these impacts can be represented
with a monetary attribute. We include:

– Degradation if the asset or activity performs its function in a less productive
or more costly manner, e.g., a text processor running slower than normal as an
asset degradation, or slower document production as an activity degradation.

– Malfunction if the asset or activity has disturbances or a hazardous behaviour,
e.g., a text processor producing errors when writing several pages.

– Abuse if the asset or activity is maliciously manipulated, e.g., a malicious
macro exfiltrating the document edited in the text processor.

– Unavailability of the asset or activity, e.g., the employees cannot run the text
processor.

– Recovery as the actions and resources to restore an asset or activity to a
normal situation. Note though that some assets might be unrecoverable (e.g.
a piece of art) and this might have an operational impact (e.g., uninstallation
of a text processor with several macros tailored to the business that cannot
be reprogrammed because a programmer left the company).

• Income reduction: Impacts that reduce the income obtained by the organisation.
In synthesis, minimizing loss of sales, contracts, market share, funding or licenses.
In a business context, they typically involve marketing and commercial aspects
related to sales. However, we also have to take into account that some income
does not necessarily come from sales, e.g. in public and non-profit organisations.
All of them can be assessed in monetary terms. We include:

– Income reduction over sales flow, involving sales but also leads, quotes, post-
sale and customer service.

– Loss of market share, which can be expressed through the reduction over the
sales flow. However, it might also be considered as an asset with an estimated
economic value that can drop if market share is reduced.

– In some cases, when the contracts are few but big, loss of contracts might be
a more practical indicator than sales and market share.

– Loss of funding not directly related with sales flow, e.g., through investments,
grants or public funding.

– Loss of licenses. It has a compliance origin but their loss could reduce income.
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• Other costs: These refer to other impacts that affect an organisation. It includes
some strategic, compliance and financial assets or potential costs. Although their
identification or estimation might be difficult, all of them may translate into income
(e.g., technological advantages) or costs (e.g., less advertisement for a well-known
brand). All of them can be represented through monetary attributes. We include:

– Loss of competitive advantage caused by leaked, spied, or publicly disclosed
sensitive information, including intellectual property or commercial secrets.
Although it could be correlated with income reduction or reputation impact,
it is also considered an intangible but defined asset that can be estimated
Raggio and Leone (2019) or sold.

– Depreciation, abuse, unavailability or elimination of financial assets. Exam-
ples are changes in stock value, financial blackmail, extortion or ransom, theft
of financial assets, including money or financial instruments.

– Costs from non-compliance with contracts, regulations, standards or any
other enforceable policy. Examples are fines and regulatory penalties, con-
tractual and agreement penalties and litigation costs.

• Reputation impact: We refer to impacts over reputation that affect the trust-
worthiness of the organisation as an institution, rather than those more directly
measurable in monetary terms that impact brand value, reduce income or op-
erations or the activities towards recovering the reputation. In principle, these
impacts cannot be represented with monetary attributes.

• Cybersecurity costs: It is practical to separate the costs related with managing
cybersecurity, since this is the activity we aim to support in our decision-making
model (Rios Insua et al., 2019). It covers the costs of preventive and reactive
controls as well as the eventual cyber insurance. All of them can be represented
in monetary terms.

2.2.2 Impact to other organisations

A cybersecurity incident in our organisation might affect other organisations and, thus,
the organisation objectives also involve minimising damage to them. It replicates the ob-
jectives for our organisation except for minimisation of cybersecurity costs, since we are
not supporting their cybersecurity decision-making. Therefore, it consists of the follow-
ing sub-objectives: Operational costs to other organisations; Income reduction
to other organisations; Other costs to other organisations; Reputation impact
in other organisations (non-monetary).

2.2.3 Harm to people

A cybersecurity incident might also affect people such as employees, customers, or local
communities. Therefore, the organisation objectives could also involve minimising harm
to people. Some of the sub-objectives proposed in Figure 1 entail impacts which have
been very rare, so far, in cybersecurity. For example, cyber attacks with physical impact
are unusual but the emergence of industrial systems and smart infrastructures brings
these risks to the fore, recall, e.g, Stuxnet. We include: Fatalities (non-monetary);
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Physical and/or mental health injuries (non-monetary); Injuries to personal
rights (non-monetary), e.g., dignity or privacy; Personal economic damage.

2.2.4 Environmental damage

Similar to damage inflicted to people, the environment might be affected by cyber at-
tacks against systems with physical operations. Here we model the impact over the
natural environment as such (e.g., the costs of cleaning contamination are an impact to
organisations or people).

2.3 Attributes for quantifying the non-monetary objectives

We have identified several objectives that were not measurable in monetary terms. We
describe here how we may proceed for each of them:

1. We could start with the identification of the main scenarios that a cybersecurity
incident could cause. These what-if scenarios should be comprehensive in terms
of covering all feasible types of impacts, related to the objective that the relevant
stakeholders, assets and activities of the organisation may suffer if attacked.

2. Once these scenarios are identified, they should be quantified for their use in the
model, following the approach depicted in Sect. 2.1 based on natural, constructed
or proxy attributes.

2.3.1 Impact on reputation

Hubbard and Selersen (2016) discuss how to assess reputational damage in cybersecurity.
The authors did not find strong evidence linking data breaches and stock prices of an
attacked company, but observed that a relevant cyberattack cost is related to control the
damage to limit reputation effects. As mentioned, this objective may impact brand value,
reduce income or service or recovery costs from a public image perspective. However,
reputation also encompasses aspects related with trustworthiness, legitimacy and image.

In the organisational theory literature, several authors apply an overall measure of
reputation (Fombrun, 2012) whereas others use an attribute-specific measure (Jensen
et al., 2012; Greenwood et al., 2005), since organisations may have multiple types of
reputations. Carpenter and Krause (2011) provide four categories: moral reputation re-
ferring to how the organisation treats stakeholders; procedural, related to the extent the
organisation follows legal and social norms; performative, referring to the capability of
the organisation for performing their job; and, finally, technical related to the capability
of the organisation for dealing with complex environments different from their business
as usual status. We can use the same four categories with changes in names to facili-
tate understanding in the context of our model: moral, compliance, performative and
adaptability reputations.

Common ways of measuring or building attributes for concepts like reputation are in-
terviews with representatives of stakeholder groups or surveying a representative sample
of such groups (van Riel and Fombrun, 2007). Indeed, measuring reputation is mean-
ingful when it is done for specific groups of stakeholders (Jensen et al., 2012; Greenwood
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et al., 2005), relative to a competitor or a similar organisation (Fombrun, 2012) or past
reputation performance (Jensen and Roy, 2008).

If we proceed with the constructed-attribute approach, we should first identify the
scenarios taking into account the previously mentioned components (e.g., what type of
reputation? with respect to which stakeholders?). Once these scenarios are identified,
they should be ordered from the most to the least preferred. Table 1 provides a simple
example of different reputation situations for a particular organisation ranked from best
to worst.

Table 1: Example of reputational impact scenarios constructed scale.

Rank Impact on reputation

1 No impact

2 Loss of moral or compliance reputation
in up to 10% of employees, customers or the general public.

3 Loss of performative or adaptability reputation
in more than 25% of customers or general public.

4 Loss of moral or compliance reputation
in up to 50% of employees, customers or the general public.

5 Loss of moral and compliance reputation
in more than 50% of employees, customers or the general public.

Alternatively, if we proceed with a proxy attribute, we could focus on the salience of
cybersecurity incidents in news, media and social networks or the cost of handling the
reputation impact of the incident.

2.3.2 Harm to people: Fatalities and injuries to physical and mental health

Cybersecurity incidents may pose a physical risk and, thus, triggering incidents that
may affect people’s health. Indeed, they are a major concern in medical devices (Fu
and Blum, 2013), industrial control systems (Macaulay and Singer, 2011) or self-driving
vehicles (Taeihagh and Lim, 2018). Additionally, mental health might be a relevant issue
too, for instance, in relation to cyber bulling (Vandebosch and van Cleemput, 2008).

Our first sub-objective, minimising fatalities, could be assessed with a natural at-
tribute such as the number of fatalities, as long as we do not distinguish between different
types of victims. For the others, for example, the WHO2 International Classification of
Diseases (World Health Organization, 2018) provides a list with all types of injuries, dis-
eases and disorders and, together with the object or substance producing them, the place
of occurrence and the activity when injured. These classifications provide thousands of
events or injuries. However, in a real case, our assessment will be more straightforward.
Usually, the physical risks of cybersecurity would be a new causing or facilitating event
of an already existing safety risk that, most of the time, has been documented by the
organisation through industrial or occupational assessments.

Risk analysis typically distinguish between major and minor injuries. We could use
them as the two natural attributes. They are also suitable for a constructed-attribute
approach. There are several methods that may help us to create an ordinal scale (Hasler

2World Health Organisation
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et al., 2012), such as the Injury Severity Score to assess the severity of injuries or the
Global Assessment of Functioning or the WHO Disability Assessment Schedule (Ustün
et al., 2010) for physical or mental functioning. Table 2 provides an example of different
levels of mental and physical impacts, based on some of the previous scoring systems
but excluding those scores related to fatalities.

Table 2: Example of physical and mental impact scenarios constructed scale.

Rank Injuries to physical and mental health

1 No injury, emergency or functional impairment.

2 Minor emergency that does not require medical intervention (NACA I); or
minor injury (4 > ISS > 0); or
absent or minimal psychological or physical symptoms, no more than
everyday problems or concerns (GAF 81-90).

3 Slight to moderate non life-threatening emergency that requires medical
intervention (NACA II and III); or
moderate or serious injury (16 > ISS >= 4); or
mild and moderate psychological or physical symptoms, causing slight to
moderate impairment in social or occupational functioning (GAF 51-80).

4 Serious emergency that may be life-threatening and which requires medical care
(NACA IV-VI); or
severe to maximal (currently untreatable) injury (ISS >= 16); or
serious psychological or physical symptoms or persistent danger causing serious
to persistent inability in several areas of functioning including family, mood,
relations, thinking or even danger of hurting self or others (GAF 1-50).

Alternatively, we could use the number of people entering into hospital in relation with
the cybersecurity event as a proxy attribute.

2.3.3 Harm to people: Injuries to personal rights

Cyber attacks may harm our dignity or privacy, accidentally or intentionally. Further-
more, large scale activities of governments or companies on the Internet have become a
major issue on this topic, such as the US NSA surveillance (Margulies, 2013), the Great
firewall of China (Lee and Liu, 2012) or the scandal of Cambridge Analytica (Kurtz
et al., 2018). In this context, governments and international institutions are pushing
for a more secure and governable cyberspace. Namely, the UN Human Rights Council
has stated that “the same rights that people have offline must also be protected online”
(United Nations Human Rights Council, 2015). See also the recent GDPR (REF) in
Europe.

These rights could be identified from national jurisprudence, but the collection of by
UN provides an international and overreaching framework. For our purposes it might be
useful the classification system in the Universal Human Rights Index Database(United
Nations Human Rights Council, 2016) which covers the human rights recognised by UN
under categories such as civil and political rights; economic, social and cultural rights;
or rights to specific persons or groups.

The constructed-attribute approach may be the best one to operationalise this subob-
jective. However, the nature of these rights, hardly commensurable, and their relatively
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big number makes this task demanding. One approach could be creating a hierarchy in-
spired on (Maslow, 1943) pyramid of needs. Most criticisms of this hierarchy focus on its
last two categories (esteem and self-actualization); for instance, differences between indi-
viduals and societies on what constitutes esteem and self-actualization or even whether
they consider the latter more basic than the former. Based on that, Table 3 provides
an example of different impact levels over personal rights, using our modification of
Maslow’s pyramid.

Table 3: Example of personal rights impact scenarios constructed scale.

Rank Injuries to personal rights

1 No personal right violation

2 Violation of personal rights that may affect esteem and self-actualisation needs.

3 Violation of personal rights that may affect social belonging needs.

4 Violation of personal rights that may affect safety needs.

5 Violation of personal rights that may affect physiological needs,
including safety needs that also affect physiological needs.

Alternatively, we could use as a proxy attribute the number of legal actions against
the organisation due to personal rights violations or the number of personal identifiable
information records exposed.

2.3.4 Environmental damage

As in subsection 2.3.2, cybersecurity incidents may trigger incidents with environmen-
tal impact. Indeed, there is a high number of potential environmental risks. We have
two relevant types of classifications: focused on the environmental impact of normal
operations and on the environmental impact of incidents. For instance, the European
eco-management and audit scheme (EMAS) (European Commission, 2017) or the British
environmental key performance indicators (Department for Environment, Food and Ru-
ral Affairs (UK), 2006) provide suggestions to assess the environmental impact of nor-
mal activities such as land use, energy efficiency or emissions to air. In our case, these
might be useful to identify impact scenarios in which the environmental performance
of the organisation is disrupted by a cyber incident. Additionally, frameworks like the
Irish (Environmental Protection Agency (Ireland), 2010) and British Common Incident
Classification Scheme (CICS) (Environment Agency (UK), 2006) provide frameworks
to identify environmental incidents such as the preservation of natural sites or habitats
or contamination of water. They also provide severity scores that might be helpful for
building a constructed scale for this objective. Note though that they include impacts
that we classify in other sections such as human health or agricultural losses.

Based on the British frameworks (Department for Environment, Food and Rural
Affairs (UK), 2006), (Environment Agency (UK), 2006), we can build a constructed
attribute for the environmental impacts. Table 4 provides a simple example of different
environmental impacts based on these two frameworks.

Alternatively, the quantitative nature of environmental performance indicators might
serve us to use them as proxy attributes. For example, we could employ the variation
in percentage of the most affected environmental indicator.
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Table 4: Example of environmental damage constructed scale.

Rank Environmental damage

1 No environmental impact.

2 Disturbance in the environmental performance indicators of the organisation.

3 Limited environmental damage, corresponding to CICS category 3 incidents.

4 Significant environmental damage, corresponding to CICS category 2 incidents.

5 Major environmental damage, corresponding to CICS category 1 incidents.

2.4 Summary

Table 5 summarises the cyber security risk management objectives and attributes that
we include in our study.

Table 5: Summary of objectives and attributes.

Objective
Natural
attribute

Constructed
attribute

Proxy
attribute

Min. operational costs
Min. income reduction
Min. other costs
Min. operational costs in other orgs.
Min. income reduction in other orgs.
Min. other costs in other orgs.
Min. personal economic damage

Monetary
units

Min. reputation impact
Min. reputation impact in other orgs.

Yes
Media salience

Public relations cost

Min. fatalities
Number of
fatalities

Min. injuries to physical
and mental health

No.injured people Yes No.people in hospital

Min. injuries to personal rights Yes

Num. of legal actions
against the organisation

Num. of personal identifiable
information records exposed

Min. environmental damage Yes
Percentage of variation in
environmental indicator

3 Impact forecasting models

Besides assessing the consequences, we need models to forecast them. Some of the above,
especially those referring to monetary consequences, may be dealt with relatively stan-
dard actuarial and financial models, as described in Eling and Wirfs (2019). However,
we face a problem of lack of data, as companies seem reluctant to reveal details when
they are attacked. Thus, we shall typically need to rely on structured expert judge-
ment techniques (Dias et al., 2018). In particular, we could use several experts possibly
combined through a weighted additive combination with weights depending on the ex-
perts’ performance, e.g. based on Cooke’s classical model (Cooke, 1991). We illustrate
forecasting the non-monetary attributes of interest.
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3.1 Service unavailability

We focus first on service unavailability given an attack. This is a relevant component to
forecast income reduction and operational costs as well as, given its relevance in supply
chain risks, in the same objectives in relation with third parties.

Under reasonable assumptions and given its flexibility in modelling various shapes,
we model the duration of the downtime is through a gamma distribution f(is|µ1, µ2) ∼
Ga(µ1, µ2). The objective would be to obtain good estimates of µ1 and µ2. Given the
lack of data, we aim at obtaining them through expert judgement. For this, we may ask
the experts for the first p25 and third p75 quartiles of the is distribution and infer the
parameters by solving

min
µ1,µ2

{
(p25 − cdf(.25, µ1, µ2))

2 + (p75 − cdf(.75, µ1, µ2))
2
}
, (1)

where cdf(·) designates the cumulative distribution function of the gamma distribution
with parameters µ1 and µ2. After obtaining the corresponding parameters µ∗

1 and µ∗
2,

if necessary we could approximate the downtime e.g. through the expected value of the
distribution Ga(µ∗

1, µ
∗
2), which is

µ∗1
µ∗2

. We would perform consistency checks based on

other quantiles. As service unavailability data become available, we could incorporate
such information with the data updating the distribution in a Bayesian fashion.

For aggregation purposes, we would typically multiply the downtime duration by the
estimated expected cost of each downtime unit.

3.2 Reputation impact

As discussed in Section 2.3.1, there is no natural attribute that allows us to assess this
impact. Our focus will be therefore in its consequence, the loss in market share in the
customer induced by the attack over the organisation. We designate it by ls, the pro-
portion of customers abandoning to a competitor. The following considerations can be
made: if the organisation is dominant in such service, the loss in market share would
be negligible, and we shall assume that ls = 0; if, on the contrary, there are alternative
service suppliers, the market loss could be non-negligible, essentially depending on the
reputation loss: the bigger it is, the bigger ls will be. Under reasonable assumptions, we
assume that ls follows a beta distribution with parameters α and β. We would perform
one assessment for each level of ls, say those in Table 1. We would proceed in a similar
fashion to Section 3.1 by asking two quartiles to experts and, subsequently, approxi-
mating the parameters, based on a least squares cdf approximation, after appropriate
consistency checks. Finally, the expected predictive proportion of customers lost could
be approximated through l̂s = α

α+β
. Again, we could introduce schemes to learn about

α and β trough Bayesian updating when data is actually available. All in all, the loss
could be quantified as l̂s×k×n×c, where k is the current market share, n is the market
size and c is the income produced per customer in the relevant risk management period,
which would be available from in house accounting experts.

A similar approach could be adopted for the reputational impact to third parties.
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3.3 Fatalities

The approach adopted considers that a cyberattack triggers an incident which causes
the failure of a cyber-physical system possibly leading to fatalities. As a consequence,
in a given application we just need to forecast the number of fatalities associated with
an accident in the corresponding system, besides the probability that the event triggers
the accident. As described by Palali and de Jong (2015), there are three general types
of safety models: sequence of discrete events (e.g., fault trees, failure modes and effect
analysis or bow ties), epidemiological with latent and active failures (e.g., Human Factors
Analysis and Classification System), and systemic for understanding the structure and
behaviour of a system (e.g., System Theoretical Accident Model and Processes or the
System Theoretical Process Analysis). Other relevant formal models include multivariate
unobserved component models (Carnero and Pedregal, 2010).

We could adapt the fatality forecasting model for aviation safety accidents in Rios In-
sua et al. (2019). Thus, the context is that a cyber attack induces an accident in an
airplane, causing some fatalities. We predict the number nF of fatalities in an accident
triggered by a cyber attack with a model nF = pF · q ·M, where pF designates the pro-
portion of fatalities; q, the installation occupancy degree; and, finally, M , its maximum
occupancy. The parameters would depend on the type of installation.

For the proportion pF , we may use a mixture model pF ∼ τ1I0 + τ2Be(a, b) + τ3I1,
where τ1 designates the proportion of accidents with no fatalities; τ2, the proportion of
accidents with both fatalities and survivors; and, finally, τ3, the proportion of accidents
with no survivors, with τ1 + τ2 + τ3 = 1, τi ≥ 0, i = 1, 2, 3. I0 is the degenerate
distribution at 0 (no occupant dies); Be(a, b) models the distribution of the proportion
of fatalities in accidents when there are fatalities and survivors; and, finally, I1 is the
degenerate distribution at 1 (all occupants die). A priori, (τ1, τ2, τ3) ∼ Dir(a1, a2, a3),
pF ∼ Be(a, b). For the occupancy proportion q, the prior distribution is q ∼ Be(c, d).
We would assess all these parameters with expert judgement as in the earlier cases.

In presence of data, we make inferences about the weights τi with a Dirichlet-
multinomial model; about pF , when 0 < pF < 1, with a Beta-binomial model; and,
about the occupancy proportion with a Beta-binomial model.

As an alternative, we could use an expert judgement based approach using a Poisson
distribution by asking two quantiles much as we did in Section 3.1.

Finally, we could use the concept of statistical value of life (Viscusi and Aldy, 2003)
to monetise the fatalities.

3.4 Injuries

Some cyber attacks might produce injuries. As in Section 2.3.2, we distinguish between
minor and major injuries. We consider three proportions phi , i = 1, 2, 3 for the three
types of survivors (i = 1, minor injured; i = 2, major injured; i = 3, uninjured),
following a model

pH = (ph1 , ph2 , ph3) ∼ α · I(0, 0, 1) + (1− α) · Dir(h1, h2, h3),

where α designates the proportion of occurrences in which none is injured and I(0, 0, 1)
is the degenerate distribution in which there are no injuries. Initially, we may assume
α ∼ Be (a, b) prior.
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As data becomes available, we would make inference about the weight α with a
Beta-binomial model; about the proportions of injured occupants, with a Dirichlet-
multinomial model. The initial estimation of q and pF would be made as in Section 3.3.

Then, the number nH = (nh1 , nh2 , nh3) of injuries for an occurrence is predicted with
a model

nH = pH · q · (1− pF ) ·M,

where pH designates the proportions of injuries and pF , q and M as in Section 3.3.
We could use the concept of statistical value of an injured person to monetise the

injuries, EUROCONTROL (2013).

3.5 Personal rights

There are several models in the literature related to forecasting incidents that can impact
personal rights, such as the chance of cybersecurity breaches (Liu et al., 2015; Sarabi
et al., 2016) or some proposal regarding litigation forecasting (Brown et al., 2004).

We could focus on forecasting the number np of personal identifiable information
records exposed in a cyberattack. For that we could use a model

np = qpNp,

where qp is the proportion of exposed records and Np is the maximum number of records.
A priori we could use a beta model for qp and introduce a beta-binomial model to learn
about it as data accumulates. We could segment the models for qp, e.g., depending on
the economic sector considered or other organisational features.

Similar to the minimization formula in (1), we would infer the distribution parameter
through expert judgement by asking .

3.6 Impact over the natural environment

Forecasting environmental impacts depend on the specifics of the sector and territory
under assessment (e.g., the European Food Safety Authority models European Food
Safety Authority (2017)). A general method that help forecasting environmental impacts
is life cycle assessments (LCA) (Hellweg and Milá i Canals, 2014). As in the case with
fatalities, we could view the cyber attack as triggering event which would start an
environmental accident and then use an environmental risk assessment model.

4 Utility model

Section 2 identified a comprehensive list of cybersecurity objectives. From it, the incum-
bent organisation could choose the objectives relevant in its problem. Then, we need
a procedure to model preferences over such impacts, as we do now through a utility
function. A brief review on utility functions may be seen in Ortega et al. (2018). We
use the classic concepts of measurable multi-attribute value function (Dyer and Sarin,
1979) and relative risk aversion (Dyer and Sarin, 1982).

The approach that we adopt, as it is not overly demanding cognitively, is relatively
general in its assumptions and is easy to assess in practice is as follows. Under sufficiently
general conditions (Ortega et al., 2018), the utility must have the following structure:
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1. u(c) = 1− exp(−ρ
∑
vi(ci)), ρ > 0.

2. u(c) =
∑
vi(ci).

3. u(c) = 1 + exp(ρ
∑
vi(ci)), ρ > 0.

where ρ is the risk aversion coefficient and the vi’s are measurable value functions.
We discuss now how to assess the parameter ρ, facilitating scaling the utility to [0, 1].

In our case, the relevant attributes may be viewed as costs, which are decreasing. We
make c = −d, to make the attribute increasing. The minimum cost is 0 and suppose the
maximum cost is c∗. The utility function has to be strategically equivalent to

u(d) = 1− e−ρd = 1− eρc.

This means that its form should be

u(c) = a(1− eρc) + b.

We make
u(0) = 1, a(1− eρ0) + b = 1⇒ b = 1

u(c∗) = 0, a(1− eρc∗) + 1 = 0⇒ a(1− eρc∗) = −1.

We need one more judgement for a certain cost, which we fix at c = c∗/2. We use, for
example, the probability equivalent method (Farquhar, 1984). In order to acheve so,
we ask the cyber risk manager to provide the probability p such that she finds equally
interesting the lotteries (

1
c

)
∼
(

1− p p
c∗ 0

)
. (2)

Then,
u(c) = (1− p)u(c∗) + pu(0) = p,

and we have the system {
a(1− eρc) = p− 1,
a(1− eρc∗) = −1,

from which
1− eρc

1− eρc∗
=
p− 1

−1
.

This leads to
eρc + (p− 1)eρc

∗ − p = 0.

Taking x = eρc, we have
(p− 1)x2 + x− p = 0, (3)

whose solution is x =
1±
√

1−4p(1−p)
2(1−p) . We then make

ρ = lnx/c,

and

a =
1

x2 − 1
.
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4.1 Utility model in the CYBECO system

In the CYBECO project, we have identified several scenarios relevant for cybersecurity
(Musaraj et al., 2018) and integrated within the CYBECO Toolbox (The CYBECO
Consortium, 2018). We have identified and synthesised a number of impacts of cyber-
security incidents, mapped in Table 6 against the cybersecurity objectives in Section 2.
All impacts are linked with monetary costs, except the loss of personal records, which is
linked with injuries to personal rights. Assuming a risk averse organisation, then if we

Table 6: CYBECO impacts mapped onto our objectives.

Impacts in CYBECO Toolbox Cybersecurity objective

Facilities: damages to physical properties Min. operational costs

IT infrastructure: business downtime Min. operational costs

Market share: percentage lost Min. income reduction

Personal information: records lost Min. injuries to personal rights

Personal information: privacy and security
liability lost

Min. other costs

Customers: loss of customers due to
brand reputation and damage

Min. income reduction

Production: interruption of provided
services or produts

Min. income reduction

Contractual and regulatory losses Min. other costs

Recovery and other post-incident expenses
Min. operational costs
Min. cybersecurity costs

apply the utility function defined in the previous section, we use

u(m, r) = 1− exp
(
− ρ
(
vm(m) + vr(r)

))
where m is the monetary impact, r is the impact on personal rights and vm(m) and vr(r)
are their corresponding value functions. To operationalise this function, we could use
the quantitative attributes that measure such subobjectives, so that the utility function
can be described as

u(m, r) = 1− exp
(
ρ
(
m+ crr

))
The first one, m, is measured through a natural attribute (monetary units) that we
shall express in e. Note that this also includes the security costs of security controls
and insurance, since they are related to the objective Min. cybersecurity costs.

The second one, r, is measured with a proxy attribute (records exposed), associated
with the parameter cr. To elicit this parameter, we should provide an economic value
to privacy. The legal costs of injuries to personal rights are part of the monetary costs.
However, there is no solid estimations for the value of privacy (Acquisti et al., 2013).
Estimations based on British (Godel et al., 2017) and American (Hann et al., 2007)
customers reveal that consumers’ value of their personal information is up to £7.25 and
$44.62 respectively. Assuming that they are risk neutral and they assign a probability of
less than one percent to a data exposure then taking the more conservative British figure
(equivalent to e8.25), we shall use that at least they value their personal information
at e825. Risk aversion would reduce this figure slightly, whereas the American figures
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or a lower perception of the likelihood would increase it (e.g., more than e4.000 with
the American figures or e1.650 if we assume a probability of breach of less than 0,5
percent). Therefore, we use e825 as a conservative estimate of the economic value of
privacy per record.

Then, the utility function that we shall be using is strategically equivalent to

u(m, r) = 1− exp
(
ρ
(
m+ 825r

))
To adjust it, we determine the worst reasonable cost c∗ = m∗ + 825r∗, where m∗ is the
sum of the maximum cost of the impacts and the security budget and r∗ is the maximum
number of records that can be exfiltrated. Suppose that for a certain organisation, m∗ is
estimated at e2.000.000 and r∗ is estimated at 5000, so that the worst cost is e6.125.000.
We also determine the best cost, which is c∗ = 0, for m∗ = r∗ = 0. Further suppose that,

for c1 =
1

2
c∗, we obtain u(c1) = 0.8, through the probability equivalent method. We then

obtain that the only valid root in 3 is x = 4, so that a = 1/15 = 0.066, ρ = 4.5267∗10−7

and b = 1, and the utility function is

u(m, r) = 0.066 ∗
(

1− exp
(

4.5267 ∗ 10−7
(
m+ 825r)

))
+ 1.

5 Discussion

In earlier work, we have presented an adversarial risk analysis (ARA) framework for
cybersecurity risk management that provides a formal method supporting all relevant
steps when undertaking a comprehensive cybersecurity risk analysis. To facilitate its im-
plementation in case studies, as well as to develop a decision support system facilitating
its implementation, we have introduced a generic objective tree for cybersecurity risk
management from the Defender erspective, with the corresponding objectives and at-
tributes, some ideas on the pertinent forecasting models and a generic preference model,
illustrated with specific examples. From it, a cybersecurity risk manager could choose
the relevant objectives to proceed in a risk analysis, formulate his preference model by
responding a few simple questions and have an orientation on the forecasting models to
be implemented, facilitating his analysis.

In future work, we shall undertake a similar approach for cybersecurity attackers,
using the concept of random utility functions.
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Appendix

Mapping of CYBECO D4.2 definitions to our cybersecurity ob-
jectives tree

Table 7: CYBECO D4.1 mapping to cybersecurity objectives tree

CYBECO D4.1(2018) Cybersecurity Objectives Tree
Impact/consequence - loss of data and software Operational costs
Impact/consequence - loss or damage to physical prop-
erties

Operational costs

Impact/consequence - product recall Operational costs (in case of substitution)
or Income reduction (in case of retrieval)

Impact/consequence - fraud Other costs
Impact/consequence - theft of money, securities Other costs
Impact/consequence - extortion Other costs
Impact/consequence - privacy liability Other costs
Impact/consequence - identity theft Operational costs
Impact/consequence - failure to render service Operational costs
Impact/consequence - security liability Other cost
Impact/consequence - property damage Other cost and Impact to other organisa-

tions
Impact/consequence - personal injury Other costs and Injuries to physical and

mental health
Impact/consequence - media liability Operational costs
Impact/consequence - product liability Operational costs
Impact/consequence - failure to supply Operational costs
Impact/consequence - management liability Other cost
Impact/consequence - breach of duty Other cost
Impact/consequence - non-compliance with regulation Other cost
Impact/consequence - brand and reputational damage Other costs (if brand is treated as asset)

and/or Reputatiol impact
Impact/consequence - non-compliance with regulation Other costs
Impact/consequence - business interruption Operational costs

Table 8: CYBECO D4.2 mapping to cybersecurity objectives tree (cont.)

CYBECO D4.2(2018) Cybersecurity Objectives Tree
Potential loss - revenue loss (all except compensatory
payments)

Income reduction

Potential loss - compensatory payments to costuemrs
and suppliers

Other costs

Brand and reputation damage Other costs (if brand is treated as asset)
and/or Reputation impactt

Financial penalties Other costs
Loss of competitivity and productivity Operational costs
Collateral expenses Operational costs
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Mapping of MAGERIT valuation criteria to our cybersecurity
objectives tree

Table 9: MAGERIT mapping to cybersecurity objectives tree

MAGERIT(2012) Cybersecurity Objectives Tree
Personal information Injuries to personal rights (impacts to persons), Other

costs (impacts to organisation due to non-compliance
regarding personal information) and Operational costs
(information asset degradation).

Legal obligations Other costs
Security Cybersecurity costs
Commercial or economic interests Income reduction or other costs (if strategic)
Service interruption Operational costs
Public order For most organisations is Impact to other organisations.

For those organisations responsible for public order it
might be necessary to create a new cybersecurity objec-
tive of of non-monetary nature for evaluating the poten-
tial states of public order: Max. public order.

Operations Operational costs
Administration and management Operational costs
Loss of confidence (reputation) Reputation impact
Prosecution of crimes and law enforcement For most organisations is min. impact to other organ-

isations. For those organisations responsible for these
tasks it is related with Operational costs

Service recovery time Operational costs
Classified information As a characteristic of information assets, Operational

costs
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Mapping of SABSA high-level general business attributes to our
cybersecurity objectives tree

Table 10: SABSA mapping to cybersecurity objectives tree

SABSA(2009) Cybersecurity Objectives Tree
Financial - Accounted Other costs
Financial - AML compliant Other costs
Financial - Auditable Other costs
Financial - Benefit-evaluated Income reduction.
Financial - Cash-flow forecasted Income reduction
Financial - Credit controlled Other costs
Financial - Credit risk managed Other costs
Financial - Investment returnable Other costs
Financial - Liquidity risk managed Other costs
Financial - Market risk managed Other costs (understood as financial market risks)
Financial - Profitable Income reduction
Financial - Reporting compliant Other costs
Physical (all attributes) Operational costs. Note that some characteristics are re-

lated to security/risk characteristics of the assets (access
controlled, damage protected, defended, secure, theft
protected).

Human (all sub-attributes) Characteristics related to human capital, which could be
classified as an asset. Therefore, the related objective is
Operational Costs

Process (all sub-attributes) Other costs
Strategic - Administered Other costs
Strategic - Branded Other costs
Strategic - Communicated Other costs
Strategic - Competitive Other costs
Strategic - Compliant Other costs
Strategic - Financed Other costs
Strategic - Goal oriented Other costs
Strategic - Governed Other costs
Strategic - Logistically managed Operational costs
Strategic - Market penetrated Income reduction
Strategic - Market positioned Income reduction
Strategic - Reputable Reputation impact.
Strategic - Supply chain managed Operational costs
System (all attributes) Operational costs. Note that some characteristics are

related to security/risk characteristics of the assets (ac-
cess controlled, incident managed, risk managed).
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Insider threat modeling: An adversarial risk
analysis approach

Abstract

Insider threats entail major security issues in geopolitics, cyber security and
business organizations. Most earlier work in the field has focused on standard
game theoretic approaches. We provide here two alternative, more realistic
models based on adversarial risk analysis (ARA). ARA does not assume com-
mon knowledge and solves the problem from the point of view of just one of
the players - the defender(typically), taking into account their knowledge and
uncertainties regarding the choices available to them, to their adversaries, the
possible outcomes, their payoffs/utilities and their opponents payoffs/utilities.
The first model depicts the problem as a standard Defend-Attack-Defend
model. The second approach segments the set of involved agents in three
classes of users and considers both sequential as well as simultaneous actions.
A data security example illustrates the discussion.

1 Introduction
Insider threats are encountered in many risk analysis areas including international se-
curity, geo-politics, business, and cyber security. They are not only widely perceived
to be significant ([Schulze, 2018], [Ware, 2017]), but also often considered to be more
damaging and more likely than outsider attacks ([Schulze, 2018], [CERT, 2012]).
Moreover, it is feared that the impact of the insider threat problem actually known
is only the tip of an iceberg as many organizations are choosing not to report such
incidents unless required to do so by law ([Wood et al., 2016]): as described in
[Hunker and Probst, 2009], it is a field in which little data is available, specially
in the cyber security domain. Protection from insider threats is challenging as
the perpetrators might have access to sensitive resources and privileged system ac-
counts. Finally, solutions to insider threat problems are considered to be complex
([Lee and Rotoloni, 2015]): technical solutions do not suffice since insider threats
are fundamentally a people issue, as thoroughly discussed in [Sarkar, 2010] and
[Greitzer et al., 2012].

In its simplest form, it is natural to view the insider threat problem as a two
player game. We may call the first player the organization (which could refer to a
single business or military unit or a similar entity, but also to a whole country or
a coalition of entities or countries) and the second one, the employee (which could
refer to one or more employees, contractors, or persons who have significant access to
the organization and have been trusted with such access). A typical scenario would
be as follows: since insider threats are a well-known phenomena, it will frequently
be the case that several measures would have already been implemented by the
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organization (at least, in case of sufficiently mature organizations) to prevent or
deter an insider attack. As an example, [Silowash et al., 2012] provide a catalog of
best practices against insider threats in cybersecurity. The employee will typically
be aware of the measures in place and plans an attack accordingly. Once the attack
has been carried out and detected, the organization will undertake actions to end the
attack and mitigate any damage caused, possibly based on the resources deployed
at the first stage. This type of interactions have been named sequential Defend-
Attack-Defend games, see e.g. [Brown et al., 2006].

It is therefore natural that game-theoretic models of the insider threats phe-
nomenon have been explored. For example, [Liu et al., 2008a] model the problem
as a two-player, zero-sum dynamic game. At each discrete time point, both players
make decisions resulting in a change of state and opposite (given the zero-sum prop-
erty) rewards to them. The authors then look for Nash equilibria (NE). This model
is oversimplified in several respects. For example, there could be multiple attackers,
the attacker pay-offs might not be immediate to obtain and the game might not be
zero-sum. Also, in most cases, the defender would have already employed measures
to prevent an insider attack and, therefore, the problem should be modeled as a
sequential Defend-Attack-Defend game instead and not as a simultaneous one.

A more realistic approach is described in [Kantzavelou and Katsikas, 2010] who
consider an insider threat problem in cybersecurity, trying to model the continuous
interactions between an intruder and an intrusion detection system (IDS). They as-
sume bounded rationality on them, use quantal response equilibria instead of the
standard NE and assign pay-offs through utilities to assess the outcomes. However,
their model focuses on a particular application and is not immediately generaliz-
able. Moreover, the game does not consider multiple players and carries on even
after detecting an attack as the detection causes the attack to be stopped, but does
not eliminate the attacker from the game. [Tang et al., 2011] also model insider
threats to IT systems considering bounded rationality and combine game theory
with an information fusion algorithm to improve upon traditional IDS based meth-
ods by being able to consider various types of information. [Feng et al., 2015] and
[Hu et al., 2015] propose three player games to model the use of Advanced Persistent
Threats (APT) by a malicious insider. They employ a two layer game and show the
existence of NE.

While game theory has been the typical choice to model interactions between
two or more strategic adversaries, limitations of such theory, e.g. [Gintis, 2009],
[Camerer, 2003], or [Raiffa et al., 2002], have long been pointed out, focusing on
common knowledge assumption and the conservative nature of its solutions. Lim-
itations of conventional risk analysis in security have been pointed out as well;
[Cox, 2009] and [Brown and Cox, 2011] warn that it is inappropriate to model, say,
terrorist actions in the same way as hurricanes. Therefore, in this paper, we shall
propose adversarial risk analysis (ARA), [Insua et al., 2009], approaches to insider
threats. ARA does not assume common knowledge and solves the problem from
the point of view of just one of the players - typically, the defender, taking into ac-
count their knowledge and uncertainties regarding the choices available to them, to
their adversaries, the possible outcomes, their payoffs/utilities and their opponents
payoffs/utilities. Since its introduction, it has been used to model a variety of prob-
lems such as network routing for insurgency ([Wang and Banks, 2011]), international
piracy ([Sevillano et al., 2012]), or autonomous social agents ([Esteban and Insua, 2014].
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ARA takes into account the expected utilities for the defender as well as the ran-
dom expected utilities for the opponents, incorporating uncertainty regarding the
strategic reasoning of the opponents. However, an ARA solution to insider threats
has not yet been developed.

The structure of the paper is as follows. We first deal with the problem through
an ARA Defend-Attack-Defend model between the organization and the employee.
We then segment the employees in three classes (good, inadvertent and malicious
insiders) considering more sophisticated ARA models. Finally, we illustrate the
concepts with a numerical example and end up with some discussion.

2 A Defend-Attack-Defend model for the insider
threat problem

We start with a Defend-Attack-Defend model to deal with the insider threat prob-
lem, which considers a defender D (the organization, she) and an agent A (the
employee, he). Our model is based upon the graphical framework described in
[Banks et al., 2015]. Figure 1 presents the problem using a bi-agent influence dia-
gram (BAID) where decisions are represented by square nodes, uncertainties using
circular nodes and utilities with hexagonal nodes. Nodes corresponding to D are
not shaded; those corresponding to A are diagonally shaded; and, finally, the shared
chance node S is shaded using horizontal dashed lines. Dashed arrows indicate that
the involved decisions are made with the corresponding agent knowing the values of
the preceding nodes, whereas solid arrows indicate probabilistic or value dependence
of the corresponding node with respect to the predecessors.

Figure 1: BAID for the Defend-Attack-Defend insider threat game

The action and outcome sets are as follows. Initially, the organization must choose
one of the available preventive measures d1 in the set D1. Having observed the
preventive measure taken, the employee will adopt one of the actions a in A; this
set could consist of either ’no attack’ or ’attack’ or different types/intensities of
attacks or other attack options. The set S consists of the possible outcomes s that
can occur as a result of the preventive measure d1 and the attack a adopted. Once
the attack has been detected, the organization will choose to carry out one of the
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possible actions d2 in the set D2 to end the attack, limit any damage and possibly
pre-empt future attacks leading to the final outcomes of both agents, respectively,
evaluated through their utility functions uD and uA. Note that all three sets D1, A
and D2 could contain a do nothing action.

For its solution, the defender must first quantify the following:

1. The distribution pD(a|d1) modeling her beliefs about the attack a chosen at
node A by the employee given the chosen defense d1.

2. The distribution pD(s|d1, a) modeling her beliefs about the outcome s of the
attack, given a and d1.

3. Her utility function uD(d1, s, d2) which evaluates the consequences associated
with their first (d1) and second (d2) defensive actions as well as the outcome
s of the attack.

Given these assessments, the defender first seeks to find the action d∗2(d1, s) maxi-
mizing her utility

d∗2(d1, s) = arg max
d2∈D2

uD(d1, s, d2), (1)

leading to the best second defense when the first one was d1 and the outcome was s.
Then, they seek to compute the expected utility ψD(d1, a) for each (d1, a) ∈ D1×A
as

ψD(d1, a) =

∫
uD(d1, s, d

∗
2(d1, s))pD(s|d1, a) ds. (2)

Moving backwards, she computes her expected utility for each d1 ∈ D1 using the
predictive distribution pD(a|d1) through

ψD(d1) =

∫
ψD(d1, a)pD(a|d1) da. (3)

Finally, the defender has to find her maximum expected utility decision d∗1 =
argmaxd1∈D1 ψD(d1). This backward induction shows that the defender’s optimal
strategy is to first choose d∗1 and, then, after having observed s, choose d∗2(d∗1, s).

The above analysis requires the defender to elicit pD(a|d1). This can either be
done using risk analysis based approaches such as [Ezell et al., 2010] or by modeling
the strategic analysis process of the attacker. To parallel the attacker’s analysis,
the defender should assess the attacker’s utility function uA(a, s, d2) and probability
distributions pA(s|a, d1) and pA(d2|d1, a, s). However, since the corresponding judg-
ments will not be available to the defender, we could model her uncertainty about
them through a random utility function UA(a, s, d2) and random probability distri-
butions PA(s|a, d1) and PA(d2|d1, a, s). Once these random quantities are elicited,
the defender solves the attacker’s decision problem using backward induction. This
is done by following a process similar to how they solved their own decision problem
but taking into account the randomness in judgments. First, the defender finds the
random expected utility for each d2 ∈ D2

ΨA(d1, a, s) =

∫
UA(a, s, d2)PA(d2|d1, a, s) dd2. (4)

Then, they find the random expected utility for each pair (d1, a) ∈ D1 ×A

ΨA(d1, a) =

∫
ΨA(d1, a, s)PA(s|d1, a) ds, (5)
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and compute the random optimal attack A∗(d1) given the defense d1

A∗(d1) = argmax
a∈A

ΨA(d1, a). (6)

Finally, once the defender assesses A∗(d1), she is able to solve her decision problem.
The desired predictive distribution by the defender about the attack chosen a given
the initial defense d1 is

pD(a|d1) = pD(A
∗ = a|d1) and pD[A∗ ≤ a|d1] =

∫ a

0

PD(A
∗ = x|d1) dx. (7)

Note that, in the above analysis, we have assumed that all the involved quantities
are continuous. Should some of the quantities be discrete, the corresponding inte-
grals would be replaced by sums. Further, in Section 4, we illustrate how PD(a|d1)
can be approximated using Monte-Carlo methods.

3 An ARA model for the insider threat problem
with segmented employees

The sequence of interactions between an organization and an employee could be more
complex for various reasons. Firstly, it has been described ([Moore et al., 2015],
[Liu et al., 2008b], [Martinez-Moyano et al., 2008]) that the measures in D1 can
have unintended negative consequences. If the employee feels that the measures
introduced by the organization to mitigate insider threats are intrusive or micro-
managing or even aggressive, that could lead him to react in unintended ways. This
could include not reporting suspicious activities or misusing the reporting processes
either accidentally or intentionally. At worst, it could even motivate an employee to
go rogue. Secondly, although we have treated the group employee as a single entity,
in reality, this group could typically include a large number of people and therefore,
the organization may be faced with multiple actors taking multiple actions. Note
that, usually, a majority of employees will not take any action that would harm the
organization. In fact, some of them would actively help prevent an insider attack.
For example, one of the possible insider actions in A could be to correctly follow the
processes or measures set out by the organization possibly resulting in the success-
ful prevention of the imminent attack altogether. Finally, the actions by employees
could be dependent (sequential) or independent (simultaneous).

We shall focus on considering the issue of modeling different types of employees.
[Liu et al., 2008b] provide a segmentation with inadvertent and malicious insiders.
We shall classify the employees as A1 (the good), A2 (the bad) and A3 (the ugly),
with S1, S2 and S3 being the corresponding outcome sets. Each group of employees
generates a relevant game as shown in Figure 2. Specifically, we consider that:

• A1 are the employees who correctly and promptly perform their duties includ-
ing following any procedures to prevent insider attacks. They have a positive
impact on the productivity and work culture of the organization and will cor-
rectly report any suspicious activity, thus helping the organization to protect
itself. Therefore, their actions will be positive to it.
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• A2 are the employees who, while not intentionally working to harm the organi-
zation, will help to create an environment which could increase the chances of
an insider attack through their accidental or deliberate actions. For example,
they could misuse the defensive procedures, creating a culture of mis-trust and
loss in productivity. This, in turn, could lead to employees not feeling safe to
report suspicious activities and even potentially motivate others to go rogue
and plan an insider attack. Therefore, their actions will be negative to the
organization.

• A3 are the employees who will actively aim at harming the organization. They
are the ones who intend to launch an insider attack. Their actions will therefore
be very negative to the organization. Actions by A1 may reduce the chance
of insider attacks as well as the chance of one of them succeeding. Similarly,
actions by A2 may increase the chance of an insider attack as well as the chance
of one of them succeeding.

First, we solve this game assuming that employees act in a sequential manner:
at any given time, only one type of employees take an action. We then solve this
game for a more realistic situation in which two or all three types of employees could
act simultaneously.

3.1 Sequential action

Figure 2: Decision trees for the three games in the insider threat problem with
segmented employees.
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The game in Figure 2[a] refers to the role played by the ‘good’ employee. Their
action setA1 includes correctly implementing defensive procedures and whistle blow-
ing suspicious activities through appropriate channels. The outcome set S1 consists
of ‘attack detected/prevented’ or ‘attack not detected/prevented’. In the first case,
we assume that no further action is required from any of the players and, hence, the
game ends. However, if the attack was not detected/prevented, the attacker, the
‘ugly’ employee, will proceed with their chosen action A3, resulting in the outcome
set S3 consisting of damage at various levels. Upon detection, the organization will
take whatever actions D2 necessary to end the attack and contain any damage.

The game represented in Figure 2[b] considers the role played by the ‘bad’ em-
ployee. Their action set A2 includes intentional or unintentional misuse of defensive
procedures, possibly leading that suspicious activities are either not reported or
reported through external/ unauthorized channels which, in turn, could cause sig-
nificant harm to the organization. At worst, such a culture could even motivate
an employee to launch an insider attack. The outcome set S2 consists of the same
events as in S1. In case that the attack was detected/prevented, we assume that
no further action was required from any of the players and hence the game ends.
However, in the event that the attack was not detected/prevented, the ‘ugly’ em-
ployee will proceed with their chosen action A3 which could consist of an attack of a
certain level resulting in the outcome set S3. Upon detection, the organization will
take whatever actions D2 necessary to end the attack and contain any damage.

It may be possible that the ‘ugly’ employee is able to carry out their operation
without being affected by the actions of the other groups of employees. This scenario
is represented by the ID in Figure 2[c]. This game is identical to the model considered
in Section 2.

For the first two games (Figs. 2[a] and [b]), the ARA will consist of identical
sets of steps. Henceforth, we use Ai, i = 1, 2 and Si, i = 1, 2. The MAID for the
segmented employee game for both cases is depicted in Figure 3. Note that we
differentiate between node Ai, which is uncertain, and node A3, which is a decision
node but belonging to a different decision maker, as this last one is strategic. The

Figure 3: MAID for decision trees [a] and [b] in the segmented employees insider
threat game
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defender must first quantify the following.

1. Her predictive distribution pD(ai|d1) about the action that will be chosen at
node Ai given the defense d1.

2. Her predictive distribution pD(si|d1, ai) about the outcome of such action,
given ai and d1.

3. Her predictive distribution pD(a3|d1, ai, si) about the attack that will be chosen
at note A3 given the outcome si and actions ai and d1.

4. Her predictive distribution pD(s3|d1, ai, si, a3) about the outcome of the attack,
given outcome si, actions a3, ai and d1.

5. The utility function uD(d1, ai, si, a3, s3, d2) given their first and second defen-
sive actions, the outcomes of the attack s3 and si and the actions a3 and
ai.

Given these, the defender works backwards along the decision trees in Figure 2 [a]
or [b]. First, they seek to find the action d∗2(d1, ai, si, a3, s3) maximizing their utility

d∗2(d1, ai, si, a3, s3) = arg max
d2∈D2

uD(d1, ai, si, a3, s3, d2). (8)

Then, for each (d1, ai, si, a3) ∈ D1×Ai×Si×A3, they seek to compute the expected
utility ψD(d1, ai, si, a3) through

ψD(d1, ai, si, a3) =

∫
uD(d1, ai, si, a3, s3, d

∗
2(d1, ai, si, a3, s3))pD(s3|d1, ai, si, a3) ds3.

(9)
Next, they compute the expected utility ψD(d1, ai, si) for each (d1, ai, si) through

ψD(d1, ai, si) =

∫
ψD(d1, ai, si, a3)pD(a3|d1, ai, si) da3. (10)

They then find the expected utility ψD(d1, ai) for each (d1, ai), as

ψD(d1, ai) =

∫
ψD(d1, ai, si)pD(si|d1, ai) dsi, (11)

and their expected utility for each d1 ∈ D1 using their predictive distribution
pD(a|d1)

ψD(d1) =

∫
ψD(d1, ai)pD(ai|d1) dai. (12)

Finally, the defender finds their maximum utility decision as d∗1 = argmaxd1∈D1 ψD(d1).
This backward induction shows that the defender’s optimal strategy is to first choose
d∗1 and then, after having observed ai, si, a3 and s3, choose action d∗2(d∗1, ai, si, a3, s3).

The above analysis requires the defender to elicit pD(a3|d1, ai, si) and pD(ai|d1).
Of these, pD(ai|d1) refers to the actions by the good or bad employees, neither of
whom intend to strategically harm the organization per se. Therefore, action Ai can
be considered to be non-strategic. For this reason, Ai is represented as a random
node in the MAID in Figure 3. Further, Ai being non-strategic, pD(ai|d1) can be
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elicited using historical data/research on employee behavior, where available. Elicit-
ing pD(a3|d1, ai, si) is, however, less straightforward. The defender could model the
attacker’s strategic analysis process by assuming that the attacker will perform an
analysis similar to the defender to find their optimal action a∗3. The attack A3 will
only go ahead if the outcome si has not resulted in it being prevented. Provided
that attack A3 can take place, while Ai and Si may have an effect on the probability
of an attack, we assume that the choice of an attack depends only on the defender
action d1, that is, pD(a3|d1, ai, si) = pD(a3|d1). To elicit it, the defender must assess
UA(a3, s3, d2), PA(s3|a3, d1) and PA(d2|d1, a3, s3). These random utilities and distri-
butions could be elicited in several ways, outlined in [Ríos Insua et al., 2019]. Once
elicited, the defender solves the attacker’s decision problem using backward induc-
tion - similar to how they solved their own decision problem. First, the defender
finds the random expected utilities for each action d2 ∈ D2

ΨA(d1, a3, s3) =

∫
UA(a3, s3, d2)PA(d2|d1, a3, s3) dd2. (13)

Then, they find the random expected utilities integrating out s3 ∈ S3

ΨA(d1, a3) =

∫
ΨA(d1, a3, s3)PA(s3|d1, a3) ds3, (14)

and, finally, compute the random optimal attack

A∗3(d1) = arg max
a3∈A3

ΨA(d1, a3). (15)

The desired predictive distribution by the defender about the attack chosen a3 given
the initial defense d1 is

pD(a3|d1) = pD(A
∗
3 = a3|d1) and pD[A∗3 ≤ a3|d1] =

∫ a3

0

PD(A3 = a|d1) da. (16)

Note that, in the above analysis, we have assumed that all the involved quantities
are continuous. Should some of the quantities be discrete, the corresponding inte-
grals would be replaced by sums. Further, in Section 4, we illustrate how PD(a|d1)
can be approximated using Monte-Carlo methods.

3.2 Simultaneous actions

We now consider the following more realistic scenarios where one or more types of
employees act simultaneously. The MAIDs for these games are shown in Figures 4
and 5.

Figure 4 is the MAID for a game in which both the good and the bad employ-
ees act simultaneously and after having observed D1. Similar to Section 3.1, these
actions are considered as non-strategic and hence are represented as a joint ran-
dom node A1A2 in the MAID. These actions result in the random outcome S12.
The ugly employee observes these actions and the outcome before launching their
attack. For this game, the ARA solution proceeds in an identical manner to the
solution described in Section 3.1. The decision maker first seeks to find action
d∗2(d1, a1, a2, s12, a3, s3) which will maximize their utility

d∗2(d1, a1, a2, s12, a3, s3) = arg max
d2∈D2

uD(d1, a1, a2, s12, a3, s3, d2). (17)
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Figure 4: MAID for the game where A1 and A2 act simultaneously followed by A3.

Note that this utility function is dependent on both a1 and a2 and on the random
outcome. s12 Then, they seek to compute the expected utility ψD(d1, a1, a2, s12, a3)
through

ψD(d1, a1, a2, s12, a3) =

∫
uD(d1, a1, a2, s12, a3, s3, d

∗
2(d1, a1, a2, s12, a3, s3))pD(s3|s12, a3) ds3.

(18)
Next, they compute the expected utility ψD(d1, a1, a2, s12) for each (d1, a1, a2, s12)
through

ψD(d1, a1, a2, s12) =

∫
ψD(d1, a1, a2, s12, a3)pD(a3|a1, a2, s12) da3. (19)

They then compute the expected utility ψD(d1, a1, a2) for each (d1, a1, a2), as

ψD(d1, a1, a2) =

∫
ψD(d1, a1, a2, s12)pD(s12|d1, a1, a2) ds12, (20)

and their expected utility for each d1 ∈ D1 using their predictive joint distribution
pD(a1, a2|d1) about what the good and the bad employees may do

ψD(d1) =

∫
ψD(d1, a1, a2)pD(a1, a2|d1) da1da2. (21)

Finally, the defender finds their maximum utility decision as d∗1 = argmaxd1∈D1 ψD(d1).
This backward induction shows that the defender’s optimal strategy is to first

choose d∗1 and then, after having observed a1, a2, s12, a3 and s3, choose action d∗2(d∗1, a1, a2, s12, a3, s3).
The above analysis requires the defender to elicit pD(a3|a1, a2, s12) and pD(a1, a2|d1).
Of these, pD(a1, a2|d1) refers to the actions by the good or bad employees, neither
of whom intend to strategically harm the organization per se. Further, it is rea-
sonable to believe that their respective actions are independent of the actions by
the other, and therefore, pD(a1, a2|d1) = pD(a1|d1) × pD(a2|d1). Action A1 and A2

can be considered to be non-strategic and both pD(a1|d1) as well as pD(a2|d1) can
be elicited using historical data/research on employee behavior, where available.
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Figure 5: MAIDs for games where A3 acts simultaneously with either A1 or A2 or
both act simultaneously followed by A3.

pD(a3|d1, a1, a2, s12) can be elicited by following Equations 13 to 16 after replacing
ai with (a1, a2) and si with s12.

The MAIDs in Figure 5 correspond to extensions of the Defend-Attack-Defend
game described in Section 2. In these games either two (a, b) or all three (c) types
of employees act simultaneously after observing D1 and the ARA solution proceeds
in a similar manner to the solution described in Section 2. The main difference
is that now the Defender must quantify the joint probabilities for the actions of
two or all three types of employees concerned. For example, for the MAID in
Figure 5 [a], the defender must quantify the distributions pD(a1, a3|d1) and the
distribution pD(s13|d1, a1, a3). If the actions of the good and ugly employees can be
considered to be independent given d1 then, pD(a1, a3|d1) = pD(a1|d1) × pD(a3|d1),
where, pD(a1|d1) can be elicited using historical data and research on employee
behavior (again, actions by the good and bad employees are considered as non-
strategic and therefore represented by a chance node in the MAIDs) and pD(a3|d1)
can be elicited by modeling the strategic analysis process of the ugly employee as
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detailed in Section 2.

3.3 Model uncertainty

We have seen how one can find an optimal action, that is, the ARA solution for
the organization given a specific game/model. The expected utility ψD(d1) that we
find in each of the models is, in fact, ψD(d1|M), where M refers to the game under
consideration. In reality though, the exact scenario will be unknown. It will not be
known if the ugly employee is able to act without being affected by the actions of
the good and/or the bad employees and if so, whether such interaction is sequen-
tial or simultaneous. A Bayesian approach allows the organization to incorporate
model uncertainty into the analysis and identify the expected utility taking model
uncertainty into account, [Draper, 1995].

The organization starts by listing the setM of possible models, which will con-
tain a subset of or all of the models considered above. Then, they must elicit a prior
distribution pD(M), ∀M ∈ M. The defender then performs the ARA analysis on
each of those models to obtain their expected utilities ψD(d1|M), ∀M ∈ M. Their
expected utility taking into account the model uncertainty is then given by

ψD(d1) =
∑
M∈M

pD(M)ψD(d1|M). (22)

Their their maximum utility decision then is d∗1 = argmaxd1∈D1 ψD(d1).

4 Example
We consider an insider threat scenario motivated by [Martinez-Moyano et al., 2008]
in which the malicious insider attempts to harm the incumbent organization with-
out getting caught. The organization focuses on information/data collection and
needs to protect itself against both insider and outsider attacks. It already has its
sites and IT systems protected so that only authorized personnel are able to access
them. However, anticipating attacks, the organization is considering implement-
ing an additional security layer to defend itself. The defensive actions (D1) under
consideration are

1. anomaly detection/data provenance tools;

2. information security measures and employee training; and

3. carrying out random audits.

The malicious insider’s aim could be financial fraud, data theft, espionage or whistle
blowing. Regardless of the exact nature of the attack, we assume that the attacker’s
options (A) refer to its scale, say small, medium or large. For simplicity, we assume
that the attack will either fully succeed (S ) or fail (F ). Once the attack has been
carried out, irrespective of whether it is successful or not, we assume that the attack
will be detected at some point, either through their own inspections or outside
sources. In the wake of the detection, the organization can choose to carry out one
of the following defensive actions (D2):

12



1. major upgrade of defenses;

2. minor upgrade of defenses; or

3. no upgrade.

4.1 Using the defend-attack-defend model

We first analyze the problem using the model in Section 2. We start by assessing
the defender’s utility function uD(d1, a, s, d2). We assume here that the defender’s
utilities depend not only on the outcome s (and d1 and d2) but also on the attack a.
Indeed, we assume that uD aggregates the monetary costs c(d1) and c(d2) associated
with actions d1 and d2 respectively and the monetized perceived utilities associated
with every (a, s) combination through

uD(d1, a, s, d2) = c(d1) + c(d2) + u(a, s). (23)

The costs and perceived utilities are listed in Tables 1 and 2. They are scaled from
-100 to 100.

d1 c(d1) d2 c(d2)
Anom. det. & Data prov. -100 Major upgrade -100
Info. Sec.& train. -60 Minor upgrade -25
Random audits -50 No upgrade 0

Table 1: Costs associated with defensive actions d1 and d2.

a s u(a, s)
Small Success -25
Small Fail 30
Medium Success -50
Medium Fail 60
Large Success -100
Large Fail 80

Table 2: Monetized perceived utility for every combination (a, s).

The global utility uD can then be computed for each combination; for example,
uD(d1 = Rand. aud., a = Med. scale, s = Not success., d2 = No upgr.) = −50+60+
0 = 10.

We next elicit the probabilities pD(s|d1, a). Suppose that they are as listed in Ta-
ble 3, with probabilities of failed attacks obtained through pD(not successful |d1, a) =
1− pD(successful |d1, a).
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d1 a = small a = med. a = large
Anom. det. & Data prov. 0.1 0.07 0.05
Info. sec. & train. 0.3 0.25 0.2
Random audits 0.5 0.4 0.3

Table 3: Probabilities pD(S = successful |d1, a) elicited for every (d1, a).
.

In order to implement the ARA solution, the defender must first identify the
action d∗2(d1, s)maximizing their utility. In this case, d∗2 turns out to be ‘No upgrade’,
being the cheapest option and will therefore maximize uD. Then, they must compute
the expected utility ψD(d1, a) using (2). The expected utility ψD(d1, a) can now be
computed, for example, ψD(Random audits, Medium scale) = −100×0.4+10×0.6 =
−34. The ψD(d1, a) values are given in Table 4.

D1 A = small A = med. A = large
Anom. det. & Data prov. -75.5 -47.7 -29
Info. sec. & train. -46.5 -27.5 -16
Random audits -47.5 -34 -24

Table 4: ψD(d1, a) for every combination of a and s.
.

Then, we need to compute the expected utility for each d1 ∈ D1 using (3) and the
predictive distribution pD(a|d1) about what the malicious insider may do. Assume
first that the defender has elicited pD(a|d1) using her own beliefs as in Table 5. The
defender’s expected utility ψD(d1) for each action d1 is computed using Equation
(3). For example, ψD(Random audits) = −47.5 × 0.5 − 34 × 0.4 − 24 × 0.1 =
−39.75. Similarly, the expected utility for Anomaly detection and Data provenance
is −69.005, whereas for Information security and training it is −29. This implies
that the optimal option for the organization is to invest in information security and
staff training and, if the attack was to happen, then, irrespective of whether it was
successful or not, the optimal follow-up would be not to upgrade their defenses.

D1 A = small A = med. A = large
Anom. det. & Data prov. 0.8 0.15 0.05
Info. sec. & train. 0.2 0.6 0.2
Random audits 0.5 0.4 0.1

Table 5: pD(a|d1) elicited by defender using their beliefs
.

We now illustrate how pD(a|d1) could be elicited by modeling the attacker’s
strategic analysis process using Equations (4) to (7). The defender could model the
attacker’s strategic analysis by assuming that the attacker will perform an analysis
similar to the defender to find their optimal attack a∗. To do this, the defender must
elicit the attacker’s random utilities and probabilities UA(a, s, d2), PA(s|a, d1) and
PA(d2|d1, a, s), using any information the defender might have, as well as considering
the possible motivations for the attackers and their skill level.
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Table 6 lists the distributions elicited for UA(a, s, d2) by the defender, with util-
ities between −100 and +100. We assume the defender thinks that the attacker
believes that the defender has a short-sighted view and their utilities are a direct
function of the costs involved in establishing the upgrades D2. Whereas they will
find it less valuable to upgrade their defensive mechanisms if the attack had, in fact,
failed, no upgrade will on average be the least attractive option given that an attack
was detected (whether successful or not).

A = small A = med. A = large
D2 Succ. Fail Succ. Fail Succ. Fail
Maj.upgr. N(−80, 5) N(−90, 2) N(−80, 5) N(−90, 2) N(−80, 5) N(−90, 2)
Min.upgr. N(−50, 10) N(−60, 5) N(−40, 10) N(−60, 5) N(−30, 10) N(−60, 5)
No upgr. 100− Exp(5) 100− Exp(5) 100− Exp(3) 100− Exp(3) 100− Exp(1) 100− Exp(1)

Table 6: Distributions UA(a, s, d2) elicited by defender.

Table 7 lists the distributions elicited for PA(d2|d1, a, s) by the defender, consis-
tent with the utilities UA(a, s, d2). For example, since an upgrade is considered to
be less valuable in the event of a failed attack, the defender is unlikely to upgrade
in the wake of a failed attack, reflected in the Dir(1, 9, 90) distribution elicited for
it. On the other hand, the Dir(5, 4.9, 0.1) indicates that an upgrade is considered
almost certainly likely in the wake of a successful large attack (irrespective of D1).

A = small A = medium A = large
Success Fail Success Fail Success Fail

Dir(1, 3, 6) Dir(1, 9, 90) Dir(2.5, 7, 0.5) Dir(1, 9, 90) Dir(5, 4.9, 0.1) Dir(1, 9, 90)
Dir(1, 5, 4) Dir(1, 9, 90) Dir(1.5, 8, 0.5) Dir(1, 9, 90) Dir(5, 4.9, 0.1) Dir(1, 9, 90)
Dir(1, 4, 5) Dir(1, 9, 90) Dir(2, 6, 2) Dir(1, 9, 90) Dir(5, 4.9, 0.1) Dir(1, 9, 90)

Table 7: Distributions PA(d2|d1, a, s) elicited by defender for every combination
(a, s, d1). First row, D1 = Anom. det. & Data prov; second, D1 = Inf. sec.; third,
D1 = Random audit. For each Dirichlet distribution, Dir(α1, α2, α3), α1 relates
with probability of major upgrade, α2 to minor and α3 to no upgrade.

Finally, Table 8 lists the distributions elicited for PA(successful |d1, a) by the
defender. For example, she believes that the attacker thinks that an attack is much
more likely to succeed if D1 is Information security and training compared to the
other options. Also, they believe that the attacker thinks that a small attack is
much more likely to succeed than a medium or large attack.

D1 A = small A = medium A = large
Anom. det. & Data prov. Beta(4, 6) Beta(2, 8) Beta(0.5, 9.5)
Inf.sec. & train. Beta(9, 1) Beta(8, 2) Beta(7, 3)
Random audits Beta(7, 3) Beta(6, 4) Beta(3, 7)

Table 8: PA(S = successful |d1, a) elicited by defender for every combination (a, s).
.

For each combination of d1, a and s, we simulate N = 1000 samples from
UA(a, s, d2) and PA(d2|d1, a, s) to obtain samples from the attacker’s expected utility
ΨA(d1, a, s) using (4) and, then, a sample of the attacker’s expected utilityΨA(d1, a)
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using (5). Then, for each of the simulations, we find the optimal defense d1 maxi-
mizing ΨA(d1, a) and, finally, estimates pD(a|d1) by counting how many times (out
of N) would the attacker choose a particular attack given d1. These are presented
in Table 9. We can now use these estimates of pD(a|d1) to compute the defender’s

D1 A = small A = med. A = large
Anom.det. & Data prov. 0.112 0.102 0.786
Info.sec. & train. 0.706 0.132 0.162
Random audits 0.399 0.119 0.482

Table 9: PD(a|d1) elicited by defender modeling the strategic analysis of the attacker
.

expected utility ψD(d1) using 3. The expected utility for the Anomaly detection and
Data provenance comes out to be −36.115, for Information security and training
be −39.051, and, finally, for the Random audit be −34.566. This implies that in
this case, the optimal option for the organization is to invest in conducting random
audits and, if the attack was to happen irrespective of whether it was successful or
not, the optimal follow-up action would be not to upgrade their existing defenses.

Observe, therefore, that the pD(a|d1) elicited by modeling the attacker’s strategic
analysis (Table 9) turns out to be quite different from that elicited using their own
belief and knowledge (Table 5), leading to different optimal decisions.

4.2 Using the segmented employees model

We now analyze this problem using the model discussed in Section 3 by assuming
three types of employees. Again, we start by assessing the defender’s utility function
uD(d1, ai, si, a3, s3, d2). Just like we did with the model in Section 4.1, we assume
that uD adopts the form

uD(d1, ai, si, a3, s3, d2) = c(d1) + u(ai, si) + u(a3, s3) + c(d2), (24)

where c(d1) and c(d2) are as defined in Table 1 and u(a3, s3) is the same as u(a, s)
defined in Table 2. To define u(ai, si), we first define the values that Ai and Si

can take for i = 1, 2. As described in Section 3, the outcome sets are Si = {attack
prevented, not prevented}. In reality, the set A1 could consist of various actions
that a good employee can take, for example, A1 = {diligently perform all tasks,
follow appropriate processes, be vigilant, etc.}. Similarly, A2 = { misuse of policies,
incorrectly following processes, actions affecting culture of organization, actions af-
fecting productivity, etc.}. The exact actions undertaken will affect the likelihood of
an attack being prevented or not. Also, the utility u(ai, si) could depend on every
combination of the actions ai and outcomes si. However, for the sake of simplicity,
we assume that individual actions do not affect the outcome or the utilities, but only
the nature of the actions (desirable or not) does. Therefore, we do not distinguish
between different desirable actions and consider them to be represented by a single a1
and similarly, represent all non desirable actions using a single a2. The u(ai, si) val-
ues are thus elicited as in Table 10, which indicates a preference to desirable actions
irrespective of the outcome. We are now able to calculate uD(d1, ai, si, a3, s3, d2)
using Tables 1, 2 and 10.
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Ai Si = prev. Si = not prev.
a1 50 -10
a2 10 -30

Table 10: u(ai, si) for every combination of ai and si.
.

In order to implement the ARA solution to this problem, the defender must use
backward induction and first identify action d∗2(d1, ai, si, a3, s3) which will maximize
their utility. In this case, again, d∗2 turns out to be ‘No upgrade’, as it is the cheap-
est option and will therefore maximize uD. Next, we need to elicit the probabilities
pD(s3|d1, ai, si, a3). Note that these probabilities are only defined when si = not
prevented. We further assume that if the attack could not be prevented; then, the
probabilities of its success are irrespective of the actions ai encountered. Under that
assumption, pD(s3|d1, ai, si = not prevented, a3) = pD(s3|d1, not prevented, a3) =
pD(s3|d1, a3). Therefore, these are considered to coincide with pD(s|d1, a) in Table 3.
We are now able to compute ψD(d1, ai, not prevented, a3) using (9). These are listed
in Table 11. We next seek to compute the expected utility ψD(d1, ai, not prevented),

A1 A2

D1 A3 = A3 = A3 = A3 = A3 = A3 =
Small Med. Large Small Med. Large

Anom.det. & Data prov. −85.5 −57.7 −39 −105.5 −77.7 −59
Info.sec. & train. −56.5 −37.5 −26 −76.5 −57.5 −46
Random audits −57.5 −44 −34 −77.5 −64 −54

Table 11: ψD(d1, ai, not prevented, a3) values for A1 and A2.
.

which requires us to elicit pD(a3|d1, ai, not prevented). This can be elicited either
using the defender’s knowledge, experience or guess or by modeling the malicious
insider’s strategic analysis process using Equations (13) to (16). Consider the first
case; assume that the nature of the attack is independent of the type of employee
A1 or A2 encountered earlier. Under this assumption, pD(a3|d1, ai, not prevented)
is considered to coincide with pD(a|d1) in Table 5. ψD(d1, ai, not prevented), thus
calculated, is listed in Table 12. The defender now seeks to compute the expected

Not prevented Prevented
D1 A1 A2 A1 A2

Anom.det. & Data prov. -79.005 -99.005 -50 -90
Info.sec. & train. -39 -59 -10 -50
Random audits -49.75 -69.75 0 -40

Table 12: ψD(d1, ai, not prevented) elicited by defender using their beliefs and
knowledge and ud(d1, ai, prevented) for each combination of D1 and Ai.

.

utility ψD(d1, ai) by integrating out pD(si|d1, ai). Note that ψD(d1, ai, prevented) =
uD(d1, ai, prevented), since the game does not proceed any further if the attack was
indeed prevented. uD(d1, ai, prevented) are also listed in Table 12. Suppose that the
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defender considers that the probability of the attack being prevented only depends on
the type of employee encountered and is independent of d1. Suppose that the chances
of preventing the attack was considered to be 50% if the attacker encountered the
good employees and just 10% is the attacker encountered by the bad employees,
that is, pD(S1 = prevented|d1, a1) = 0.5 and pD(S2 = prevented|d1, a2) = 0.1.
ψD(d1, ai) thus computed, is listed in Table 13. Finally, the defender needs to

D1 A1 A2

Anom.det. & Data prov. -64.5025 -98.1045
Info.sec. & train. -24.5 -58.1
Random audits -24.875 -66.775

Table 13: ψD(d1, ai) computed by the defender.
.

integrate out pD(ai|d1) to compute the expected utility ψD(d1) of his defensive
actions D1 so as to identify the optimal action d∗1 that will maximize this ex-
pected utility. Suppose the defender believes that the good and the bad employees
are randomly and evenly spread throughout their entire workforce and, therefore,
pD(ai|d1) is independent of d1. Suppose the defender guesses that 80% of the em-
ployees are good ones and the rest are bad. Then, ψD(Anom.det. & Data prov.) =
−71.2229, ψD(Info. sec. & train.) = −31.22 and ψD(Random audits) = −33.255.
Thus, based on the elicited utilities and probabilities, the optimal defensive action
is to invest in Information security and training of the staff.

We now consider the case where pD(a3|d1, ai, not prevented) is elicited by model-
ing the attacker’s strategic thinking process. As discussed earlier, given that the at-
tack has not been prevented, the choice of the attack will be independent of the type
of employee (A1 or A2) encountered. We assume that the choice of an attack depends
only on the defender actions d1 and d2. That is, pD(a3|d1, ai, si) = pD(a3|d1); to elicit
it, the defender must assess UA(a3, s3, d2), PA(s3|a3, d1) and PA(d2|d1, a3, s3). It is
also reasonable to assume that attacker’s preferences and uncertainties are also inde-
pendent of the type of employee encountered. Therefore, we consider UA(a3, s3, d2) to
coincide with UA(a, s, d2) in Table 6, PA(s3|a3, d1) to be exactly same as PA(s|a, d1)
elicited in Table 8 and, finally, PA(d2|d1, a3, s3) with PA(d2|d1, a, s) elicited in Table
7.

We follow Equations (13) to (16) to compute PD(A3 = a3|d1, ai, not prevented),
which, as expected turns out to be pD(A = a|d1) elicited in Table 9. We now com-
pute the random expected utility ΨD(d1, ai, si), and Equation (10) and proceed to
compute the random expected utility ΨD(d1) using Equations (11) and (12). In this
case, we have ψD(Anom. det. & Data prov.) = −52.147, ψD(Info. sec. & train.) =
−37.049 and ψD(Random audits) = −30.248. Therefore, based on the elicited utili-
ties and probabilities, the optimal defensive action is to invest in performing random
audits.

Thus, similar to the earlier case, eliciting pD(a3|d1) by modeling the attacker’s
strategic thinking process yields a different optimal decision for the defender.
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4.3 Model uncertainty

Suppose now that the defender is not certain if the malicious insider will be able
to act on their own or whether his actions will be affected by other employees.
He decides to consider two models: M1, the model in Section 4.1 and M2, that
in Section 4.2. He elicits a prior probability pD(M1) = 0.3, which implies that
pD(M2) = 0.7. He would then perform the ARA analysis and arrive at his ex-
pected utilities ψD(Anom.det. & Data prov., Info.sec. & train.,Random audits|M1)
= (−36.115,−39.051,−34.556), when pD(a|d1) is elicited by modeling the attacker’s
strategic thinking, for modelM1 as illustrated in Section 4.1. Similarly, he arrives at
his expected utilities ψD(Anom. det. & Data prov., Info. sec. & train.,Rand. aud.|M1)
= (−52.147,−37.049,−30.248), for model M2 as illustrated in Section 4.2. Then
using (22), the expected utilities ψD(d1) taking into account the the model un-
certainty are ψD(Anom.det. & Data prov., Info.sec. & train.,Random audits|M1) =
(−47.337,−37.65,−31.541). Thus, investing in random audits is the optimal strat-
egy for the defender taking into account their model uncertainty.

5 Discussion and Further Work
Insider threats constitute a major security problem worldwide. We have provided
two ARA based models to deal with them illustrated with a data security appli-
cation. The first one is a Defend-Attack-Defend model; the second one includes a
segmentation of employees in three groups and considers several interaction possi-
bilities over time.

In general, as in with almost any security application, interactions between the
defenders and the attackers will expand over several time periods and they will,
respectively, evolve their defenses and attacks so as to effectively counter their ad-
versarial actions. This can be modeled using a Markov decision process (MDP).
However, a general ARA solution to MDPs has not been developed yet, thus be-
ing a promising area for further research. We could then provide a specific MDP
solution to the insider threat problem. This approach could also provide an ARA
solution to support the advanced persistent threat (APT) problem in cybersecurity,
being a long term threat.

Insider threats come in many different forms. For example, the three player
versions could consist of two attackers and one defender or the other way around
or even an attacker, a defender and a victim (which would be a third party). For
example, a three player case consisting of a malicious insider, the APT and the
organization consists of two attackers and a defender. But the malicious insider
could be also someone who uses their privileges to exploit, abuse or harm a third
party, which could be clients, customers, patients, etc. A recent well-known example
of this type is that of the USA gymnastic team osteopathic physician Dr. Nassar
who was convicted for sexual abuse of young athletes under the pretext of treating
them for their injuries. Therefore, an important extension would be to develop
ARA solutions to such complex three player games. This could provide a much more
realistic alternative to the game theoretic models proposed in [Feng et al., 2015] and
[Hu et al., 2015].

Players are not always entirely rational and hence incorporating bounded ratio-
nality may make the model more realistic. ARA is naturally equipped to incorporate
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attackers with different reasonings, such as non-strategic thinking, Nash equilibrium,
level-k thinking and the mirror equilibrium ([Banks et al., 2015]). However, a gen-
eral ARA solution using bounded rationality has not yet been developed.

ARA relies on the elicitation of the adversary’s utilities and probabilities. Ro-
bustness analysis of ARA to these elicitations is necessary, but has yet to be de-
veloped. [Ríos Insua et al., 2016] highlight the need and illustrate how a robustness
analysis can be performed in principle for ARA. It is important to be able to inves-
tigate the sensitivity of the ARA outcome - the optimal strategy - to any errors or
mis-specifications in the utilities and the probabilities elicited for the analysis.

Acknowledgments
The work of CJ was supported by the Strategic Investment funding provided by the
University of Waikato. The work of DRI is supported by the AXA-ICMAT Chair
on Adversarial Risk Analysis, the Spanish Ministry of Economy and Innovation pro-
gram MTM2017-86875-C3-1-R and project MTM2015-72907-EXP. Work supported
by the EU’s Horizon 2020 project 740920 CYBECO (Supporting Cyberinsurance
from a Behavioural Choice Perspective).

References
[Banks et al., 2015] Banks, D., Rios, J., and Insua, D. R. (2015). Adversarial Risk

Analysis. CRC Press, first edition.

[Brown et al., 2006] Brown, G., Carlyle, M., Salmeron, J., and Wood, R. (2006).
Defending critical infrastructure. Interfaces, 36:530–544.

[Brown and Cox, 2011] Brown, G. G. and Cox, Jr., L. A. (2011). Making terrorism
risk analysis less harmful and more useful: Another try. Risk Analysis, 31(2):193–
195.

[Camerer, 2003] Camerer, C. (2003). Behavioural Game Theory. Princeton Univer-
sity Press.

[CERT, 2012] CERT (2012). 2012 Cyber Security Watch Survey. How Bad is the
Insider Threat? Software Engineering Institute, Carnegie Mellon.

[Cox, 2009] Cox, Jr., L. A. (2009). Game theory and risk analysis. Risk Analysis,
29(8):1062–1068.

[Draper, 1995] Draper, D. (1995). Assessment and propagation of model uncer-
tainty. Journal Royal Statistical Society, 57(1):45 – 97.

[Esteban and Insua, 2014] Esteban, P. G. and Insua, D. R. (2014). Supporting an
autonomous social agent within a competitive environment. Cybernetics and Sys-
tems, 45(3):241–253.

[Ezell et al., 2010] Ezell, B., Bennett, S., Winterfeldt, D., Sokolowski, J., and
Collins, A. (2010). Probabilistic risk analysis and terrorism risk. Risk Analy-
sis, 30(4).

20



[Feng et al., 2015] Feng, X., Zheng, Z., Hu, P., Cansever, D., and Mohapatra, P.
(2015). Stealthy attacks meets insider threats: A three-player game model. In
MILCOM 2015 - 2015 IEEE Military Communications Conference, pages 25–30.

[Gintis, 2009] Gintis, H. (2009). The Bounds of Reason: Game Theory and the
Unification of Behavioural Sciences. Princeton University Press.

[Greitzer et al., 2012] Greitzer, F., Dalton, A., Kangas, L., Noonan, C., and Ho-
himer, R. (2012). Identifying at-risk employees: Modeling psychosocial precursors
of potential insider threats. Proc. 25th HICSS.

[Hu et al., 2015] Hu, P., Li, H., Fu, H., Cansever, D., and Mohapatra, P. (2015).
Dynamic defense strategy against advanced persistent threat with insiders. In
2015 IEEE Conference on Computer Communications (INFOCOM), pages 747–
755.

[Hunker and Probst, 2009] Hunker, J. and Probst, C. (2009). Insiders and insider
threats: An overview of definitions and mitigation techniques. Journal Wireless
Mobile Networks, Ubiquitous Computing, and Dependable Applications, 2(1):4–27.

[Insua et al., 2009] Insua, I. R., Rios, J., and Banks, D. (2009). Adversarial risk
analysis. Journal of the American Statistical Association, 104(486):841–854.

[Kantzavelou and Katsikas, 2010] Kantzavelou, I. and Katsikas, S. (2010). A game-
based intrusion detection mechanism to confront internal attackers. Computers
& Security, 29(8):859 – 874.

[Lee and Rotoloni, 2015] Lee, W. and Rotoloni, B. (2015). Emerging Cyber Threat
Report 2015. Georgia Tech Information Security Centre and Georgia Tech Re-
search Institute.

[Liu et al., 2008a] Liu, D., Wang, X., and Camp, J. (2008a). Game-theoretic model-
ing and analysis of insider threats. International Journal of Critical Infrastructure
Protection, I:75 – 80.

[Liu et al., 2008b] Liu, D., Wang, X., and Camp, J. (2008b). Mitigating inadvertent
insider threats with incentives. BUSCAR!!, ??:??

[Martinez-Moyano et al., 2008] Martinez-Moyano, I., Rich, E., Conrad, S., Ander-
sen, D., and Stewart, T. (2008). A behavioral theory of insider-threat risks: a
system dynamic approach. ACM Transactions on Modeling and Computer Sim-
ulation, 18(2).

[Moore et al., 2015] Moore, A., Novak, W., Collins, M., Trzeciak, R., and Theis, M.
(2015). Effective Insider Threat Programs: Understanding and Avoiding Potential
Pitfalls. White Paper.

[Raiffa et al., 2002] Raiffa, H., Richardson, J., and Metcalfe, D. (2002). Negotiation
Analysis. Havard University Press.

[Ríos Insua et al., 2019] Ríos Insua, D., Banks, D., Ríos, J., and Ortega, J. (2019).
Adversarial Risk Analysis as an Expert Judgement Methodology, pages –. Springer
International Publishing.

21



[Ríos Insua et al., 2016] Ríos Insua, D., Ruggeri, F., Alfaro, C., and Gomez, J.
(2016). Robustness for Adversarial Risk Analysis, pages 39–58. Springer Interna-
tional Publishing.

[Sarkar, 2010] Sarkar, K. (2010). Assessing insider threats to information security
using technical, behavioural and organisational measures. Info. Sec. Tech. Rep.,
15:112–133.

[Schulze, 2018] Schulze, H. (2018). Insider Threat, 2018 report. ca Technologies.

[Sevillano et al., 2012] Sevillano, J. C., Insua, D. R., and Rios, J. (2012). Adversar-
ial Risk Analysis: The Somali Pirates Case. Decision Analysis, 9(2):86–95.

[Silowash et al., 2012] Silowash, G., Cappelli, D., Moore, A., Trzeciak, R., Shimeall,
T., and Flynn, L. (2012). Common sense guide to mitigating insider threats. Def.
Tech. Inf. Center Tech. Report.

[Tang et al., 2011] Tang, K., Zhao, M., and Zhou, M. (2011). Cyber insider threats
situation awareness using game theory and information fusion-based user behavior
predicting algorithm. Journal of Information & Computational Science, 8(3):529
– 545.

[Wang and Banks, 2011] Wang, S. and Banks, D. (2011). Network routing for insur-
gency: An adversarial risk analysis framework. Naval Research Logistics (NRL),
58(6):595–607.

[Ware, 2017] Ware, B. (2017). Insider Attacks, 2017 insider threat study. Haystax.

[Wood et al., 2016] Wood, P., Nahorney, B., Chandrasekar, K., Wallace, S., and
Haley, K. (2016). Internet Security Threat Report, volume 21. Symantec.

22



  

Reference : CYBECO-WP3-D3.1-v2.0-CSIC 
Version : 2.0 
Date 

 

: 2018.04.23 

P 
Page :   Annexes 

D3.2: Improved modelling framework for cyber risk management 
 

   

 

 

 

 

Annex 4: Paper: Assessing Supply Chain Cyber Risks

 



Assessing Supply Chain Cyber Risks



Abstract

Risk assessment is a major challenge for supply chain managers, potentially af-

fecting business factors such as service costs, supplier competition and customer ex-

pectations. The increasing interconnection between organizations has put into focus

methods for supply chain cyber risk management. We introduce a framework for such

activity which takes into account various techniques of attacking an organisation and

its suppliers, as well as the impacts of such attacks. Since data is lacking in many

respects, we use structured expert judgment methods to facilitate its implementation.

We couple a family of forecasting models to enrich risk monitoring. The framework

may be used to set up risk alarms, negotiate service level agreements, rank suppliers

and identify insurance needs, among other management possibilities.

Keywords: Risk Analysis, Supply Chain Risks, Cybersecurity, Expert Judgment



1 INTRODUCTION

Earthquakes, economic crises, strikes, terrorist attacks and other events may disrupt supply

chain operations with significant impact over the performance of organizations. As exam-

ples, it is reported that Ericsson lost 400 million EUR after their supplier’s semiconductor

plant caught on fire in 2000 (Latour, 2001) and that Apple lost many customer orders

during a supply shortage of DRAM chips after a 1999 earthquake in Taiwan (Lovejoy,

2016).

Supply chain risk management (SCRM) has come into place to implement strategies to

manage risks in a supply chain with the goal of reducing vulnerabilities and avoid service

and product disruptions. As in other risk analysis application areas, SCRM usually involves

four processes: identification, assessment, controlling and monitoring of risks (Bedford &

Cooke, 2001). Tang and Tomlin (2008) define the field as the management of supply chain

risks through coordination or collaboration among supply chain partners to ensure prof-

itability and continuity and consider four basic areas to mitigate their impact: supply,

demand, product and information management. Ritchie and Brindley (2007) developed a

framework that categorizes risk drivers and integrates risks dimensions in supply chains.

Sharland et al. (2003), Jüttner (2005) and Zsidisin and Ritchie (2008) identify key issues

in SCRM through surveys, presenting best practices. Hallikas et al. (2004) proposed a risk

management process in network environments giving a more holistic view; they provide a

risk matrix approach, although this type of tool has well known shortcomings, Cox (2008).

Thekdi and Santos (2016) introduce interdependency modeling through an input-output

model accross multiple sectors for assessing the social and economic factors associated with

SCRM. Kern et al. (2012) illustrate how supply chains would benefit from the capacity
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of predicting service unavailability early enough, so that interruptions may be mitigated.

DiMase et al. (2016) provide traceability considerations using high risk parts prioritization,

certificates of conformance, adoption of standards and considering resilience to recover its

original functional state after a disruption. Foerstl et al. (2010), Bandaly et al. (2012),

Kern et al. (2012) and Ghadge et al. (2013) develop frameworks that cover identification,

assessment, response management and performance outcomes. Curkovic et al. (2015) iden-

tify how companies may manage supply chain risks through FMEA. Aqlan and Lam (2016)

and Fattahi et al. (2017) used optimization and simulation to deal with deterministic and

stochastic features in SCRM. Zahiri et al. (2017) and Song and Zhuang (2017) are recent

examples of areas where SCRM has a major impact in real applications.

Due to the proliferation of cyber attacks and the increasing interconnectedness of or-

ganisations, a major feature of recent interest refers to new cyber threats affecting supply

chain operations in what we shall call Supply Chain Cyber Risk Management (SCCRM).

As an example, Target suffered in 2013 a major cyber breach through their air condition-

ing supplier losing up to 70 million credit and debit cards of buyers, with a massive loss

of reputation, McGrath (2014). Another relevant attack was Wannacry which took over,

among many others, Telefonica and the UK NHS producing the unavailability of numerous

services, which entailed costs estimated to have reached $4 billion, Berr (2016).

We present here a general framework for SCCRM. Section 2 presents a general descrip-

tion, covering models to forecast attacks and their impacts, integrating such information to

provide relevant risk indicators. Due to lack of data, we need to rely on expert judgment

to assess the involved parameters. Section 3 outlines its implementation. Section 4 covers

a numerical example. We end up with some discussion in Section 5.
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2 A FRAMEWORK FOR SCCRM BASED ON

EXPERT JUDGMENT

Consider a company c interconnected with its suppliers s, pertaining to a set S. Both the

company and the suppliers are subject to various types of attacks a ∈ A, which will be the

set of incumbent attacks. Examples include attacks through botnets or based on stolen

login information. Attacks to the supplier could also be transferred to the company. As

an example, imagine a case in which one of the company’s suppliers is infected through

malware. The attacker could then scan the supplier’s network and send infected emails to

the company which would be more likely to get infected as the received software originates

from a legitimate source.

We have access to a threat intelligence system (TIS) (Tittel, 2017) which collects data

nac,s, a ∈ A, about the cyber attack vectors gathered from the company and its suppli-

ers. The vectors could include, e. g., information such as IPs of botnet infected devices or

number of malware infections found. The TIS may also provide data about the security

environment, including, for instance, the number of negative mentions in hacktivist blogs,

and the security posture, covering for example the patch cadence or the number of vul-

nerabilities. All of the above information will be available for both the company and its

suppliers.

Based on such data, and other available information, we aim at assessing:

• the probabilities that the company’s suppliers are attacked;

• the probability that the company is attacked, either directly or through its suppliers;

• the impacts that such attacks might induce over the company,
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and aggregate such information to facilitate cyber risk assessment to the company in rela-

tion with its suppliers so as to support cyber risk management decisions.

We describe a framework to obtain, combine and apply in practice the required model

ingredients. Given the reluctance of companies to provide data concerning sufficiently

harmful attacks for reputational reasons, we shall cope with the eventual lack of data to

fit the proposed models by extracting information from cybersecurity specialists through

structured expert judgment techniques (Cooke, 1991; O’Hagan et al., 2006). Here, the

term “sufficiently harmful” indicates that the attack is relevant and has caused significant

damage to the company or its suppliers1.

2.1 Probability of a Sufficiently Harmful Attack

We start by describing how to estimate the probability that the supplier, or the company,

is successfully attacked, given the information scanned through the TIS. For simplicity, we

do not include for the moment the security environment and posture in the model, which

we cover in Section 2.2. We would undertake the proposed approach for each attack type

a ∈ A.

We assume that the probabilities for the attack vectors may be modelled with logistic

regression models (Hosmer et al., 2013) with the number of parameters depending on the

number of levels corresponding to the attack vector. For example, suppose that one of the

vectors which includes h severity levels; we would include h+ 1 parameters, as in

Pr(y = 1 | β,n) = exp(β0 + β · n)
1 + exp(β0 + β · n) , (1)

1For example, this could correspond to attacks that need to be declared to the supervisory authority,
as in the recent General Data Protection Regulation, EU (2018).
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where y = 1 indicates that the attack was successful; ni is the number of i-th level in-

fections of the incumbent attack vector, i = 1, 2, ..., h; n = (n1, . . . , nh); and, finally,

β = (β1, . . . , βh).

The parameters will be indirectly estimated through expert judgment, for which we

provide appropriate questions and consistency checks. We illustrate the approach with the

above specific case with h infection categories. We use elicitation techniques, Clemen and

Reilly (1999), to assess, for example,

p
∧

0 = Pr(y = 1 | β0,β,n = [0, . . . , 0]) = exp(β0)
1 + exp(β0) .

A typical question that could be posed to experts is:

Assuming that the TIS has detected no evidence in the network concerning such

infection (i.e., ni = 0, i = 1, . . . , h), what would be the probability p0 of actually

suffering a sufficiently harmful attack due to such type of infection?

We then make

log
(

p
∧

0
1− p

∧
0

)
= β
∧

0.

Note that we may introduce interactive schemes to elicit the pertinent judgments.

Then, we further assess through expert judgment

p
∧

1 = Pr(y = 1 | β0,β,n = [1, 0, . . . , 0]) = exp(β0 + β1)
1 + exp(β0 + β1) ,

obtaining

β
∧

1 = log
(

p
∧

1
1− p

∧
1

)
− β
∧

0.
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We would extract p
∧
i from the experts in a similar manner to obtain β

∧

i, i = 2, . . . , h. Finally,

we would check for consistency based on assessments such as, e. g.,

p
∧

= Pr(y = 1 | β0,β,n = [2, 0, . . . , 0]),

checking whether

log
(

p
∧

1− p
∧

)
' β
∧

0 + 2β
∧

1.

If not, we would need to reassess some of the judgments and modify the parameters ac-

cordingly.

Besides the attack probabilities, we also need to assess the probability of a type a attack

being transferred from a supplier to the company, denoted by qa. We define an attack to a

supplier as transferred successfully if it is immediately followed by a second attack to the

company, taking advantage from either the information gathered in the first attack or the

compromised infrastructure. The probabilities of transferring an attack are different for

each of the types; thus, we elicit them directly from the experts. An example of a typical

question for assessing such probabilities, in relation e. g. with malware, would be

Suppose that there is an attack to the supplier based on malware, what would be

the probability of the customer suffering another one, taking advantage of the

supplier’s attack?

As before, we introduce consistency checks and interactive procedures to evaluate such

assessment. We assume that the probabilities are the same for every supplier, mainly to

reduce the cognitive load over the experts.
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2.2 Taking into Account the Security Environment and Posture

We describe now how we incorporate information about the security environment and

posture of the supplier and the company within the attack probabilities. Essentially,

we introduce indices for the corresponding variables through multicriteria value functions

(González-Ortega et al., 2018) and then apply the approach in Section 2.1 to extract the

required coefficients.

We define first an index e which assesses the security environment of, say, the supplier

based on the k environment variables captured by the TIS. Let ei be the i-th variable,

i = 1, . . . , k, rescaled to [0, 1]. With no loss of generality, assume that the bigger ei is, the

worse is the security environment. We use a multicriteria value function, e = ∑k
i=1 λiei

with ∑k
i=1 λi = 1, λi ≥ 0, i = 1, . . . , k. We determine the λi weights by asking experts to

compare pairs of security environment contexts leading to a system of equations

δ1
1λ1 = δ2

1λ2,

...

δ1
k−1λk−1 = δ2

k−1λk.

(2)

For example, given a reference value δ1
1 for the first environment variable, we obtain the

first equation by asking the expert about the value δ2
1 of the second environment variable

such that the following two security environments are perceived as equally unsafe

(δ1
1, 0, . . . , 0) ∼ (0, δ2

1, . . . , 0).

As an example, given that δ1
1 = 0.7, the expert answer could be δ2

1 = 0.3, leading to
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the equation 0.7λ1 = 0.3λ2. We can introduce interactive schemes to obtain the δi’s and

perform consistency checks.

Then, from system (2), we obtain the k − 1 equations

λi = δ1
i−1
δ2
i−1

λi−1 = ri−1λi−1, i = 2, . . . , k,

with

ri = δ1
i /δ

2
i , i = 1, . . . , k − 1.

Taking into account that ∑k
i=1 λi = 1, we solve for λ1 to get

λ1

(
1 +

k−1∑
i=1

i∏
j=1

rj

)
= 1,

so that

λ1 = 1
1 +∑k−1

i=1
∏i
j=1 rj

,

and

λi =
i−1∏
j=1

rjλ1, i = 2, . . . , k.

We proceed in a similar manner to aggregate the security posture, defining an index l

and assessing such posture through a multicriteria value function

l =
∑
i

vili,

with ∑i vi = 1 and vi ≥ 0 ∀i, where li is the i-th security posture variable.

Once we have built the environment and posture value functions, we assess the corre-
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sponding β parameters. We adopt common parameters for all attack types. For example,

for the specific case of a harmful attack with h levels of infection, as in equation (1), we

use

Pr(y = 1 | β,n, l, e) = exp(β0 + β · [n, l, e])
1 + exp(β0 + β · [n, l, e]) ,

where [, ] designates the concatenation of the corresponding vectors. We can adopt a

reference value for l, say v1, which we associate with l = [1, 0, . . . , 0] and ask about the

corresponding probability p
∧
h+1, when, e. g., n1 = n2 = 1 and ni = 0, i = 3, . . . , h. Then,

with e = 0, it would be

p
∧
h+1 = exp(β0 + β11 + β21 + β30 + · · ·+ βh0 + βh+1v1 + βh+20)

1 + exp(β0 + β11 + β21 + ...+ βh+1v1 + βh+20) .

Since we have already elicited β
∧

0, β
∧

1 and β
∧

2 we easily obtain β
∧

h+1, through

β
∧

h+1 = 1
v1

(
log

(
p
∧
h+1

1− p
∧
h+1

)
− β
∧

0 − β
∧

1 − β
∧

2

)
.

We would proceed similarly to obtain βh+2, introducing the corresponding consistency

checks.

As mentioned, we implement this approach for all attack types a ∈ A, both for the

company and its suppliers.

2.3 Impacts over Supplier and Company

We describe now the models used to predict the impacts of attacks over the company. The

relevant impacts might depend on the organization. In our supply chain application area

we have included: the suppliers service unavailabilities, as they would induce a cost in the

9



company due to lacking such services; the company’s service unavailability, which would

also induce a cost, typically, higher than the earlier ones; and, finally, the loss of company

reputation which might induce a loss of customers. We use the same distributions for all

attack types. Hubbard and Seiersen (2016) discuss how to measure other relevant impacts

in cybersecurity.

2.3.1 Supplier and Company Unavailability

We focus first on supplier and company service unavailability, given a sufficiently harm-

ful attack. Their durations will be designated by is and ic, respectively. We model the

corresponding downtimes through gamma distributions

f(is | ks, θs) ∼ Ga(ks, θs); f(ic | kc, θc) ∼ Ga(kc, θc).

Given the lack of data, we aim at obtaining estimates of k and θ through expert judgment.

For this, we may ask the experts for the first p25 and third p75 quartiles of the is and ic

distributions and infer the parameters by solving

min
k,θ

{
(p25 − cdf(.25, k, θ))2 + (p75 − cdf(.75, k, θ))2

}
,

where cdf(·, k, θ) designates the cumulative distribution function of the gamma distribution

with parameters k and θ. This leads to the corresponding optimal parameters k∗ and θ∗.

We perform consistency checks based on other quantiles and use interactive procedures to

obtain the involved quantiles. When required, we may approximate the downtimes through
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the expected value of the distributions, respectively,

īs = E[f(is | k∗s , θ∗s)] = k∗sθ
∗
s ; īc = E[f(ic | k∗c , θ∗c )] = k∗cθ

∗
c .

We undertake this approach for all the suppliers and the company.

2.3.2 Reputation

We consider now the impact of an attack over the company’s reputation. We assume that

reputational impacts occur only if there is a direct attack to the company. There is no

natural attribute that allows us to assess reputation loss, see the discussion in Hubbard

and Seiersen (2016). Our focus is therefore in its business consequence which we consider

to be the loss in market share induced by a harmful attack over the organization.

Let us designate by d the proportion of customers abandoning to a competitor due to

the incumbent loss of reputation, which we model as a beta distribution with parameters

a and b, that is d ∼ Beta(a, b). We proceed in a similar fashion to Section 2.3.1, by asking

two quartiles to experts and, subsequently, approximating the parameters a∗, b∗, based on

a least squares cdf approximation, after appropriate consistency checks. When required,

the expected proportion of customers lost could be approximated through the expected

value

d̄ = a∗

a∗ + b∗
.

2.3.3 Aggregating Impacts

We describe now how we aggregate all relevant impacts to compute the expected impact

over the company. We focus on approximations based on means to allow for fast compu-
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tations, appropriate for continuous monitoring. A more detailed analysis would be based

on Monte Carlo approximations based on samples from the distributions of ic, is and d.

In any case, we would require τ , the proportion of market share for the company; η, its

(monetary) market size; and κs and κc, the average cost per hour of supplier and company

service unavailability, respectively. We may assess them from data and/or experts.

We compute the average downtime cost of the supplier s and company c after a suffi-

ciently harmful attack through

Cis = κs × īs,

Cic = κc × īc.

On the other hand, the average reputational cost after a successful attack is approximated

through the cost associated with clients abandoning the company, which would be

Cd = d̄× τ × η.

Recall now that there are three types of attacks:

1. Direct attacks to the company, with expected cost C = Cd + Cic .

2. Attacks to the supplier that disrupt its service but are not transferred to the company,

with expected cost C = Cis .

3. Attacks to the supplier that disrupt its service and are transferred to the company.

The expected cost in this case would be C = Cd + Cic + Cis .

To cater for the company’s risk attitude, we may use a constant risk averse utility model,
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González-Ortega et al. (2018),

u(C) = (1− e−ρC)/ρ,

where ρ is extracted from experts within the company.

2.4 Model Outputs

We describe now the model outputs that may be relevant for risk management, including

the probabilities of various attacks, the expected impacts and the expected utilities derived

from the above results. Having available sufficient computational time and resources, we

would replace the proposed indicators by their Monte Carlo approximations.

2.4.1 Attack Probabilities

For the incumbent company c and its suppliers, we rewrite the probability of a type a ∈ A

security event resulting in a sufficiently harmful attack in a more compact form through

pai = exp(βa0 + βa · nai )
1 + exp(βa0 + βa · nai )

, (3)

where nai represents the attack vector count, including the environment and posture indi-

cators, and i ∈ {c, s}. Assuming that the attack types are independent, the probability of

a direct attack to the company will be approximated through

APc =
KA∑
k=1

∑
I∈CA,k

∏
a∈I

pac
∏

a∈A\I
(1− pac)

 ,
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where CA,k is the set of all possible combinations of k elements taken from A and KA ≤ |A|

is the maximum number of simultaneous attacks taken into account.

For each supplier s ∈ S, we approximate the induced attack probability from s to c as

IAPs
c =

KA∑
k=1

∑
I∈CA,k

 ∏
a∈I

pas
∏

a∈A\I
(1− pas)


︸ ︷︷ ︸

Probability of direct attack

1−
(

1−
∏
a∈I

(1− qa)
)

︸ ︷︷ ︸
Probability of transferring attack

,

recalling that qa is the probability of an attack of type a being transferred from s to c.

Finally, the global attack probability to the company can be approximated through

GAPc ' APc + (1− APc)
KS∑
k=1

∑
I∈CS,k

∏
s∈I

IAPs
c

∏
s∈S\I

(1− IAPs
c)
 ,

where S is the set of all possible suppliers of company c and KS ≤ |S| is the maximum

number of suppliers that can reasonably transfer an attack over the same time period. Note

that in the above approximation, we assume that when an attack is direct to the company

it supersedes the indirect attacks as its consequences will be much more important.

2.4.2 Risk Measures: Expected Impacts of Attacks

Recall that we are assuming that if an attack is successfully transferred from a supplier,

there are unavailability and reputational costs, whereas if the attack is not transferred,

we only consider supplier unavailability costs. We now approximate the expected impacts.

These include the impact due to direct attacks to the company, expressed as

Rc =
KA∑
k=1

∑
I∈CA,k

∏
a∈I

pac(Cd + Cic)
∏

a∈A\I
(1− pac)

 ,
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and the impact induced by attacks to the supplier s, which is

IRs
c =

KA∑
k=1

∑
I∈CA,k


 ∏
a∈I

pas
∏

a∈A\I
(1− pas)


Attack not transferred︷ ︸︸ ︷1−
∏
a∈I

(1− qa)
(Cis) +

1−
1−

∏
a∈I

(1− qa)
(Cd + Cic + Cis)

︸ ︷︷ ︸
Attack transferred

.

Finally, the total impact would be

TRc = Rc +
∑
s∈S

IRs
c.

In a similar fashion, we may consider approximations to expected utilities replacing the

previous impacts by the corresponding utilities.

As mentioned, we could refine the analysis by using Monte Carlo approximations to

compute expected utilities, should we have sufficient computational time.

2.5 Forecasting Risk Indicators

The previous approach is used periodically based on collecting data through the TIS and

aggregating the results to assess supply chain cyber risks. As a relevant complement,

observe that the proposed approach focuses on studying several risk indicators Xj (attack

probabilities, expected impacts, expected utilities) to monitor SCCR at the company, in

reference to time j.

The ensuing analysis focuses on just one of the indicators, but applies to all of them.

Dj represents the data available until time j. Xj+1|Dj will represent a forecasting model

15



for the risk index at time j + 1 and summarises all information available at time period j

concerning such index.

We employ Dynamic Linear Models (DLMs) to support forecasting tasks in risk moni-

toring. We briefly sketch the basic DLM results we use. For further details see West and

Harrison (2013) and Petris et al. (n.d.). We adopt the general, normal DLM with univariate

observations Xj, characterized by the quadruple {Fj, Gj, Vj,Wj}, where, for each j, Fj is

a known vector of dimension m× 1, Gj is a known m×m matrix, Vj is a known variance,

and Wj is a known m×m variance matrix. The model is written as

θ0|D0 ∼ N(m0, C0),

θj|θj−1 ∼ N(Gjθj−1,Wj),

Xj|θj ∼ N(F ′jθj, Vj).

Because of the relative stability of the type of series considered, we use a trend (second

order polynomial) model which is a specification of the above DLM with constant Fj and

Gj through

F =
[

1 0
]

and G =

 1 1

0 1

 .
West and Harrison (2013) summarize the basic features of DLMs for forecasting purposes

that we use. They are based on the one-step ahead predictive distributions which, for each

j, have normal distribution

Xj|Dj−1 ∼ N(fj, Qj),

for mean fj and variance Qj recursively defined. k-steps ahead forecasts are also based on
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normal models and will be used below.

2.6 Uses

We sketch now various uses of the above outputs that facilitate SCCRM:

• Issue alarms. Based on the above mentioned forecasting models, we may use point

forecasts at time j for the risk indicator given by E[Xj|Dj−1] = fj and interval

forecasts determined by [lj = fj − z1−α/2Q
1/2
j , uj = fj + z1−α/2Q

1/2
j ], where uj and lj

respectively represent the upper and lower bounds of the interval; z1−α/2 is the 1−α/2

quantile of the standard normal distribution; and, finally, α is the desired probability

level of the predictive interval. We then issue an alarm about an unexpected increase,

or decrease, in the incumbent risk indicator when the corresponding next observation

xj does not fall in the predictive interval [lj, uj]. Should this happen repeatedly over

time, the alarm could be modulated.

Another type of alarms may be raised when the predictive interval captures a suf-

ficiently high risk level y. For this, we perform predictions k steps ahead based on

standard DLM forecasting results to try to forecast sufficiently in advance critical

risk issues, i.e. we try to detect whether Pr(Xj+k ≥ y) will be sufficiently high for a

certain k.

• Rank suppliers. We consider for this the induced risks, induced expected impacts or

induced attack probabilities of various suppliers over the company. For example, we

could say that supplier s1 is preferred to supplier s2 if its induced expected impact is

smaller, that is, if IRs1
c ≤ IRs2

c . This supports identifying and dealing with riskier sup-

pliers for communication purposes, increasing transparency and forecasting critical
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situations.

• SLA negotiations between the company and its suppliers. Using the same indices as

before, this could be based, for example, on the company requiring the supplier to

preserve its risk indicator Xj to remain below a certain maximum level mj, as well as

monitoring and forecasting whether such maximum acceptable level is attained. Re-

peated violations of the agreed maximum risk level could lead to a contract breaching

and a penalty, possibly encompassing a supplier to better manage cybersecurity. For

example, the company could require the supplier to preserve IRs
c ≤ m, over time.

• Insurance. The above measures allow us to properly apportion the cyber risks to

which a company is subject to, including those related with third parties, thus facili-

tating the negotiation of insurance contracts, both with the suppliers and the insurer.

For example, the company could apply for an insurance premium reduction if TRc is

preserved below a certain agreed level throughout a year.

3 IMPLEMENTATION

We describe how we implement the proposed approach and couple it with an available TIS.

Essentially, we first calibrate several experts concerning their cyber security knowledge; we

then obtain their judgments and combine them to obtain the corresponding parameters;

and, finally, during operation, we assess attack probabilities, risks, issue alarms and forecast

risks for the next period. This will require some data preprocessing.
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3.1 Security Expert Calibration

We obtain judgments from m experts which we calibrate using Cooke (1991) classical

model. We first ask the experts several general questions related with cyber security. As

an example, one of the questions we used is:

Which was the number of new ransonware types over the last year?

The experts’ answers describe the intervals that, they believe, cover with high probability

the value, as well as their median. Based on such assessments, we obtain the expert scores

(ωi)mi=1, ωi ≥ 0, ∑m
i=1 ωi = 1.

3.2 Security Expert Assessment. Generic Questions

Once we have calibrated the experts, we extract from them through a questionnaire the

relevant attack probabilities based on hypothetical scenarios in which sufficently harmful

attacks may occur. For example, one of the questions referring to a scenario pertaining to

a botnet based type of attack we use is:

According to you, what would be the probability of actually suffering a sufficiently

harmful attack through botnet infected devices if the TIS did not detect any of

them in the company’s network? And if the TIS detected 0.25% of such infected

devices in their network?

The i-th expert provides a probability pi for the corresponding question, which we aggregate

through

p =
m∑
i=1

ωipi.
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Based on such type of assessments we obtain the β parameters, covering with such infor-

mation the stages described in Sections 2.1 and 2.2.

3.3 Company Expert Assessment. Specific Questions

We then extract the specific parameters which refer to impacts to the company (direct or

over the supplier) through a questionnaire. These parameters include, among others, the

current market share, the market size, or the expected number of customers lost after a

successful attack. Some of them will be based on available data; for others, we could ask

experts as described above. For instance, a question we use is:

According to you, what would be the average cost of one hour of service unavail-

ability of such supplier?

In such a way, we cover the aspects described in Section 2.3.

3.4 Data Preprocessing

The data received through the TIS are preprocessed via exponential smoothing (Brown,

2004). This allows us to control the growth rate of various security indicators and partly

mitigate fluctuations associated with random variations. Given {xj}, the raw data se-

quence, nj will represent the security indicator at time j, and h the smoothing factor

through

n0 = x0, nj = h× xj + (1− h)nj−1.

Observe that

nj = h× xj + (1− h)hxj−1 + · · ·+ (1− h)k−2hxj−(k−1) + (1− h)khnj−k.
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Since (1− h)k∗ will be small enough for k∗ sufficiently large, we have that

nj '
k∗∑
i=0

h(1− h)ixj−i,

which effectively entails preserving the last k∗ scans (xj, xj−1, . . . , xj−k∗) and consolidating

them in nj.

3.5 Operation

With the above information, we are capable of putting the proposed framework under

operation. We summarize first all the required information, after having calibrated the

experts:

1. The coefficients λ, v, and β are obtained (indirectly) from the experts as described

in Sections 2.1, 2.2 and 3.2.

2. The probability qa of each attack type transferring from the supplier to the customer

is obtained directly from the experts as described in Section 2.1.

3. The information needed to compute both the downtime cost of the company and

supplier, Cc and Cs, must be provided by the company. This involves assessing every

supplier s to obtain estimates of its downtime distribution is, as well as ic.

4. The information needed to compute the reputational cost Cd is obtained from experts

within the company.

Once we have obtained those parameters, we may start operations by essentially scanning

through the TIS, performing the risk computations, updating the forecasting model and
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issuing alarms when required. The suppliers and company data obtained periodically by

scanning the network through the TIS are preprocessed as in Section 3.4. In summary, at

every time step j we perform the following computations:

1. Scan network for attack, posture and environment vectors n, e and l, for the company

and its suppliers.

2. Assess the attack probabilities APc, IAPs
c and GAPc.

3. Assess the risks Rc, IRs
c and TRc.

4. Issue alarms, if required.

5. Display risk outputs.

6. Compute risk forecasts for next period.

4 A NUMERICAL EXAMPLE

We describe now a numerical example using simulated data. Assume that we are able to

scan information regarding four attack vectors, |A| = 4. For the first security event, one

expert provided attack probabilities p
∧

0 = 0.05, when the scan did not detect any infected

devices, and p
∧

1 = 0.25, when the scan detected 1% of infected devices in the company’s

network. We then make

β
∧

0 = log
(

p
∧

0
1− p

∧
0

)
= −2.94,

and

β
∧

1 = log
(

p
∧

1
1− p

∧
1

)
− β
∧

0 = 1.85.
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pc ps1 ps2 q

atk0 0.057 0.468 0.383 0.103
atk1 0.187 0.164 0.350 0.107
atk2 0.131 0.166 0.143 0.056
atk3 0.236 0.481 0.200 0.084

Table 1. Probabilities of successful attack for each attack type

If we detect now that 0.075% of the devices are actually infected at t = 1, we estimate the

attack probability of that specific security event as

pc = exp(−2.94 + 1.85× 0.075)
1 + exp(−2.94 + 1.85× 0.075) = 0.057.

We show in Table 1 columns 1-3 the probabilities of each of the security events for the

company and two of its suppliers s1 and s2. These probabilities are obtained through

equation (3), as demonstrated above for the company and the first security event. We also

show in the fourth column the probabilities of an attack being transferred from a supplier

to the company.

Given the above, we can compute the direct attack probability to the company over

the next period, which is AP = 0.491; the attack probabilities induced by the suppliers

IAP1 = 0.111, IAP2 = 0.098; and, finally, the global attack probability GAP = 0.592. Note

that having two suppliers increases the chances for the company of receiving attacks. If

both suppliers were offering the same service, say, both were Internet providers, we could

take into account their IAPs to decide whether to contract the services from one or the

other. In the example, we might be more inclined to work with the second supplier as

receiving an attack through it seems less likely.

To transform the previous probabilities into expected costs, we assume the following
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information: the average cost per hour of downtime of our company is 20k EUR; the market

size is 2922 billion EUR; and, finally, the current market share of the company is 18%. In

addition, the company estimates that one hour of service unavailability of both suppliers

costs 25k EUR. The first and third quartiles for the distribution of the downtime are 2, 6

hours for the company and 1, 4 hours for the suppliers.
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Figure 1. Distributions of company downtime duration (left) and proportion of customers
lost (right)

With the previous information, using the procedure in Section 2.3, we infer the dis-

tributions of the downtime duration and the proportion of customers lost, Figure 1. The

downtimes are modeled as a Gamma(1.79, 0.40) distribution for the company and a Gamma

(1.21, 0.42) for the suppliers. Finally, the corresponding quartiles for the proportion of cus-

tomers lost distribution after a successful attack are assessed as 0.01 and 0.05, corresponding

to a Beta(0.13, 1.74) distribution.

We aggregate the previous costs and compute the expected direct cost for the company

R = 517.16k EUR; the expected cost induced by the suppliers IR1 = 116.73k, IR2 = 103.38k

EUR; and the total expected cost TR = 737.27k EUR. Note again that the first supplier

seems worse as its entailed expected loss is bigger.
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Figure 2. Evolution of AP, IAP and GAP

Finally, the procedure described above would be run periodically, obtaining new values

for the probabilities and costs. An example for T = 100 time steps is shown in Figure 2,

where we plot the evolution of the attack probability, the induced attack probabilities and

the global attack probability. Here we can see how, at t = 0, we may prefer supplier 2

over supplier 1 since it seems to induce less risk to the company. However the probability

induced by supplier 2 gets worse over time, reverting the situation. We also fit DLMs

for the four probability indices, as described in Section 2.5. This allows us to forecast

the different attack probabilities k-steps ahead. Figure 2 shows the expected value of the

predictive distribution X100+k|D100 for k = 1, ..., 20, and the corresponding 95% predictive

intervals.

5 DISCUSSION

As shown by the recent presence of several products in the market, SCCRM is a very

relevant and current managerial problem given the increasing importance of cyber attacks
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and interconnectedness of organizations in modern economy. This has motivated us to

provide a framework to support SCCRM. Given the reluctance of companies to release

attack data, we have described how we may extract knowledge from security experts to

obtain the parameters required to assess risk scores, based on information coming from a

TIS in relation with attack vectors as well as the security posture and environment from

a company and its suppliers. Besides, we have incorporated forecasting models that allow

us to monitor risk and issue alarms. We may also use the provided information to rank

suppliers, negotiate SLAs or use them for insurance purposes.

There are several ways to further advance this work. For example, should data about

attacks be revealed, we could introduce schemes to learn about the involved parameters

using our assessments as priors, through Markov Chain Monte Carlo procedures, see e. g.

French and Rios Insua (2000). We could also incorporate additional impacts such as loss

of productivity, loss of revenue or the increase of working hours.The model might also

consider collaboration among suppliers to mitigate consequences when a service is disrupted

or monitoring information sharing between suppliers to avoid unfair competition. Finally,

we have included only direct suppliers to the company but we could also consider suppliers

of suppliers, and beyond.
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Structured Expert Judgement Issues in a Supply Chain
Cyber Risk Management System

Abstract

The escalation of cyber threats is a major problem for supply chain managers with po-
tentially enormous impacts affecting service availability and reputation, among other
performance indicators. We sketch a framework and system to support supply chain
cyber risk management. As data regarding impacts of cyber attacks are scarce and
difficult to obtain, we describe how we acquire the required operational parameters
through structured expert judgement techniques. We then describe how the whole
framework is set up and implemented.

Keywords: Supply Chain Risk Management, Cybersecurity, Structured Expert Judgement.
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1 Introduction

Organisations worldwide are suffering cyber attacks with important consequences. This is
increasingly perceived as a major global problem as reflected e.g. in the World Economic
Forum (2018) Global Risk Report, and becoming even more important as companies, ad-
ministrations and individuals get more and more interconnected, facilitating the spread of
cyberthreats. As an example, the recent WannaCry attack affected around 45,000 systems
in large organisations worldwide, including the UK NHS, Renault and Telefónica, causing
major service interruptions. Its ransonware caused estimated financial losses of nearly $4
billion, Evans et al. (2017). Another relevant example is the Target data breach, McGrath
(2014), in which a cyber attack to that company through one of its suppliers leading to the
loss of 70 million credit card details, entailing major reputational damage.

As a consequence, organisations face significant risks due to the need of using inter-
connected suppliers for their services. To alleviate such problem, the discipline of Supply
Chain Cyber Risk Management (SCCRM) aims at implementing strategies to oversee cyber
risks with the objective of mitigating service interruptions and decreasing their eventual
impact, Redondo et al. (2018). To further complicate matters organisations are reluctant
to release information concerning attacks for reputational reasons, as this could affect re-
lations with stakeholders and entail a loss of customers (Pelteret and Ophoff, 2016). In
order to supplement such lack of data, we may appeal to structured expert judgement
elicitation techniques, Cooke (1991), O’Hagan et al. (2006), Clemen and Reilly (2013) and
WHO (2019), exploiting the knowledge available from cyber security experts to support
cyber risk management.

This paper briefly sketches a framework for SCCRM judgement in Section 2. Data
regarding occurrences and impacts of cyber attacks are scarce and difficult to obtain, as
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companies are reluctant to reveal them for reputational reasons. Therefore, we need to rely
on various expert judgement techniques to assess the various parameters1 in the required
impact and preference models in Sections 3, 4 and 5. Section 6 illustrates operational
aspects of our framework and system. We end up with a discussion in Section 7.

2 A framework for SCCRM

We aim at supporting a company c interconnected with k suppliers in its supply chain
cyber risk management activities. We briefly sketch the framework that we use for such
purpose, with full technical details available in Redondo et al. (2018). Our focus will be
on the expert judgement techniques and processes used to extract beliefs and preferences
from experts to make the framework operational.

The company faces three cyber attack scenarios: direct attacks; attacks to its suppliers

not transferred to the company, but affecting it through the unavailability of the corre-
sponding product or service; and, finally, attacks targeting the suppliers that are eventually

transferred to the company. Some of these attacks could be successful in the sense of pro-
ducing noticeable harm in the company. We assume we have access to a Threat Intelligence
Service (TIS) (Tittel, 2017) which compiles data, both for the company and its suppliers,
about: attack vectors, such as the number of malware infected devices or the number of
phishing attempts suffered; the security environment, e.g, the number of negative tweet
mentions about the company and its suppliers; and, finally, the security posture, like the
corresponding number of open ports or installed firewalls.

Based on the TIS data, and other available information, we aim at assessing the fol-
lowing basic ingredients for our SCCRM framework: the probabilities that the company

1For confidentiality reasons, data have been conveniently masked when presented

3



and its suppliers are attacked; the probability that an attack to a supplier gets transferred
to the company; the impacts over the company associated with eventual attacks, direct or
indirect, during the relevant security planning period; and how does the company evaluate
various impacts. We then integrate such assessments to evaluate the supply chain cyber
risks that the company could face and support risk management decisions both at strategic
and operational level.

To begin with, we start by estimating the probability that the company and its suppliers
are attacked through various attack vectors. First, we aggregate the information about the
security environment and posture of the company and the suppliers through two different
indicators which are a linear combination of several variables.Then, attack vectors are
considered conditionally independent given the posture and the environment. We then
assume that all attack probabilities may be modelled through logistic regressions with
explanatory variables referring to the indicators corresponding to that attack vector and
the security environment and posture. As companies are reluctant to provide their attack
data, we indirectly estimate the corresponding logistic regression weights based on expert
judgement as described below. Besides, we need to be able to assess the probabilities that
eventual attacks to suppliers get transferred to the company, which we obtain directly also
from experts. With all this information, we may assess the relevant attack probabilities
directly to the company or indirectly through its suppliers, duly apportioning their sources.

We next need to estimate the impacts that an attack might have over the company,
taking into account the three types of attacks mentioned above. The relevant impacts
may vary across organisations. Some examples are the costs associated with the rupture
of a service provided by a supplier, as in the Wannacry case with Telefonica; the costs
associated with the unavailability of the company’s service or product, as in the Wannacry
case with the UK NHS; or the loss of reputation associated with a major attack, which
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might induce a loss of customers or stock value, as in the Target case. We typically
use continuous distributions assessed based on quantiles obtained from experts. We then
aggregate various impacts through a multi-attribute utility function, if we need to cater for
risk attitudes, González-Ortega et al. (2018).

Based on the above probability and preference models, we assess the expected impacts
and risks, duly apportioning them to various sources (suppliers, transferred attacks from
suppliers, or direct attacks) and use such assessments to rank suppliers, negotiate service
level agreements, or allocate cyber security risk management resources, including cyber
insurance products, among other possibilities.

We present now how the expert judgement elicitation tasks described above are actually
implemented and how we integrate all the information for risk management purposes.

3 Expert Calibration

We start by calibrating eight experts available based on their cyber security knowledge.
After a training session, we passed them a questionnaire which served for weighting pur-
poses.

3.1 The calibration process

We used reports, such as Kaspersky (2016) or Imperva (2016), to elaborate the question-
naire about cyber security attacks impacting SMEs and large companies. The questionnaire
was built using the Google Forms tool and was ran initially with two colleagues to check
for comprehensibility. It included ten questions concerning attack likelihoods and impacts.
Two examples are:

Which was the number of new ransomware types over the last year?
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Which was the average cost in dollars of a ransomware incident over the last

year?

Before interviewing the actual experts, we suggested that they watched the YouTube
It’s a Risky Life videos 2, 3 and 4 to refresh the basic issues and concepts required for the
session. When beginning the session, we also provided a review of the concepts, objectives
and process to be followed. Some of the experts were interviewed physically, the remaining
ones through the communication tool Skype. We introduced the process as follows

We present here a few general questions in relation with cyber security attacks,

their likelihood and impacts. Answer them with what represents for you the

quantities described.

At each question, we shall ask you about an interval which covers with high

probability (0.90) the actual value based on the 5% and the 95% quantiles and

what is, according to you, the median value. For example, the interval could be

[30-40] and the median value 35, so the answer would be [30-40], 35.

Several motivating and warming up examples were included to further facilitate under-
standing, together with additional explanations about cognitive and motivational biases.
In such a way, we tried to make sure that the experts understood the questions and response
format correctly. They were also encouraged to ask for further clarification whenever they
felt like. We also provided graphical support (fortune wheels) to facilitate the assessments.
In the end, we verified whether the experts had answered all questions according to the
given instructions and checked that the results had been submitted correctly, allowing them
to modify responses upon reflection. One of the experts (Ex2) actually misunderstood the
concepts underlying some of the questions, so we decided to suppress his responses from the
study. We also eliminated questions Q{6, 7} as the answers were astray, possibly because of
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inadequate wording on our behalf. The average duration of the sessions was approximately
1 hour, covering both the calibration and elicitation questions.

3.2 Expert response exploratory analysis

We start with some exploratory data analysis about the expert responses. We display
their point and interval responses in Table 1, as well as the actual observations. We double
checked whether some of the questions had been misunderstood (consider e.g. the responses
Ex8-Q1, Ex6 for Q{9, 10} but the participants confirmed their results. Incidentally, this
pointed out towards somewhat unknown areas about which even security experts are not
sufficiently aware of.

Experts Q1 Q2 Q3 Q4 Q5 Q8 Q9 Q10

Ex1 1,15,50 2,50,100 20,50,100 10,45,90 50,60,100 500,750,1000 50,60,75 30,40,40

Ex3 5,10,10 40,45,50 50,60,60 10,10,20 40,50,50 1000,1000,3000 75,80,85 10,10,15

Ex4 2,2,3 20,20,40 2,3,5 25,30,35 30,40,50 5000,15000,400000 70,75,80 70,75,80

Ex5 5,7,8 6,10,50 18,30,35 40,40,50 90,95,99 20000,1500000,2000000 20,25,30 1,2,6

Ex6 3,4,5 10,30,30 30,40,50 60,80,100 40,50,60 100,10000,15000 1,2,5 1,2,5

Ex7 1,3,5 1,40,100 1,90,100 1,10,100 1,80,100 1,12000,100000 1,80,100 1,60,100

Ex8 500,750,1000 70,90,100 10,15,25 50,65,80 70,80,90 50000,70000,150000 10,15,20 20,40,45

Obs 62 22 42 32 77 700 64 36

Table 1: Responses of experts and observations for the 7 retained experts and 8 retained
questions

The boxplots in Figure 1, in which we have normalised the answers of question Q8 to [0,100],
shows that, globally, the expert responses tend to cover the observations (blue line), except
for Q1 (which was mostly underestimated) and Q8 (which was overestimated).
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Figure 1: Expert answer box plots. Actual observations in blue. Extreme outliers removed

We next display the scatter plots of the experts’ responses and their correlation matrix,
Figure 2, in which we have also included the observations (as the responses of a ninth
expert). We have removed the very extreme observation of Ex8 in Q1 from this represen-
tation.
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Figure 2: Scatterplot of expert answers and correlation matrix

We do not observe very high correlations. For example, if we use 0.5 as cutting value
for noticeable correlations, only Ex1 with Ex{3, 4, 7} and Ex3 with Ex7 show relevant
correlation between themselves, and Ex{1, 3} and Ex7 with the actual observations.

Table 2 summarises the performance of the experts on the 8 seed questions, presenting
how many observed responses appeared in each of the intervals, compared with the expected
responses.
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Expert Below 5th 5th to 50th 50th to 95th Above 95th

Ex1 0 5 2 1
Ex3 4 0 0 4
Ex4 3 0 2 3
Ex5 3 0 1 4
Ex6 1 2 1 4
Ex7 0 6 1 1
Ex8 4 2 0 2

Exp 0.405 4.05 4.05 0.405

Table 2: Performance of experts on the 8 seed questions

3.3 Calibration

We used Excalibur (Lighttwist, 2018) to score the experts as described in Table 3, based on
Cooke’s classical method (Cooke, 1991), which provides also the calibration and information
scores of the experts retained. We did not use DM optimisation and adopted a significance
level of 0.001.
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Expert Calib.Sc. Weight Info.Sc.

Ex1 0.429 0.820 1.834
Ex3 0.000 0.000 3.440
Ex4 0.000 0.000 2.592
Ex5 0.000 0.000 2.143
Ex6 0.002 0.004 2.636
Ex7 0.145 0.176 1.168
Ex8 0.000 0.000 1.441

Table 3: Calibration, weights and information scores of experts

We performed a robustness analyses and found Q{5, 9} to be the most influential over the
results. Also, Ex{1, 7} showed the lowest discrepancy.

4 Attack probabilities’ assessment

We describe now how to extract the cyber security knowledge from the experts to en-
able us building our SCCRM model. For this, we created a second questionnaire with
Google Forms. To start with, the questionnaire included a short introduction outlining the
procedure to answer the questions:

The following questions will aid us in extracting your expertise on cyber security

so as to build a model that allows us to forecast sufficiently important attacks

to a company. Please feel confident. There are no right or wrong answers. We

shall be posing questions that take advantage from your cyber security expertise.
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The questions were divided into two groups: first, attack probability questions and, then,
questions related with the environment and the posture.

4.1 Attack probabilities

With this first group of questions, we aimed at obtaining for each expert i the probability
pi of various events. We then aggregate the probabilities through p = ∑

ωipi (effectively,
i ∈ {1, 6, 7}), where the weights ωi are the result of the calibration process in Section
3.3. Based on such probabilities, at this stage we extracted the judgements required to
obtain the logistic regression parameters mentioned in Section 2. Each question included
a description of a relevant scenario with the answer interpreted as a probability.

We illustrate the procedure for the specific attack due to malware infections. Our TIS
is able to detect three types of malware. Thus, the model has three coefficients besides β0

and the logistic regression model we use is

Pr(y = 1|β0, .., β3, n1, ..., n3) = exp(β0 + β · n)
1 + exp(β0 + β · n) (1)

where n = (n1, n2, n3) is the vector containing the counts of the three types of malware,
the β’s are the logistic parameters and y = 1 indicates that the attack through malware
was successful (sufficiently harmful). First, we ask the experts for the attack probability
p0 in a scenario in which no such infections were detected by the TIS, n = (0, 0, 0). The
actual question posed to the experts was:

Assume that the TIS has detected no evidence of malware infections in your

network, what would be the probability of actually suffering an attack based on

malware?

We then aggregate the responses of the (three) experts to obtain p0. Since we are assuming
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that the attack probability follows equation (1) and no infections are found, we have β0 =
σ(p0), with σ(p) = log

(
p

1−p

)
. Table 4 (first row) includes the responses of the three experts.

We then obtain the assessment p0 = 0.011 and, consequently, β0 = −4.521.

j Ex1 Ex6 Ex7 pj m βj

0 0.010 0.050 0.010 0.011 0 −4.521
1 0.020 0.100 0.020 0.020 5 3.746
2 0.150 0.100 0.020 0.127 5 4.135
3 0.350 0.200 0.050 0.296 1 3.655

Table 4: Responses of experts and estimated parameters.

We compute the remaining required coefficients in a similar manner, asking the experts to
provide an estimate of the attack probability pj if the TIS detects now a certain number m
of infections belonging to the j-th level of the attack vector and none of the rest, aggregating
the responses and solving for the corresponding βj. We need to ask at least one question
per coefficient to each expert. A typical question would be:

Assume that the TIS has detected 5 malware infected devices of level 1 in your

network, what would be the probability of actually suffering an attack based on

malware?

The previous question proposes an scenario in which nk = m if k = j and nk = 0 if k 6= j,
with m = 5 and j = 1. After aggregating the expert responses in pj, we make

βj = σ(pj)− β0

m
.

Table 4 includes the responses of the experts, their aggregation and the corresponding
parameters.

13



Note that the coefficients regarding different infection levels are independent between
them and depend only on β0. We also perform additional questions for each level j with
different values of m to check whether the experts are consistent in their answers, as similar
βj values should be obtained.

We perform the above for each attack vector detectable bt the TIS..

4.2 Environment and posture

We describe now how to incorporate information about the security environment. Examples
of the incumbent variables include the number of negative mentions about the company in
major social media and the number of mentions in security blogs. To do so, we first define
an index e which assesses the security environment through a multi-criteria value function,
González-Ortega et al. (2018). Let ei be the i-th environment variable, i = 1, . . . , k,
captured by the TIS, rescaled to [0, 1]; we assume that the bigger ei is, the worse the security
environment is. We aggregate all the variables e = ∑k

i=1 λiei with λi ≥ 0, i = 1, . . . , k and∑k
i=1 λi = 1. A similar procedure is applied to combine the posture variables into a posture

indicator, l = ∑
i vili, with ∑i vi = 1 and vi ≥ 0 ,∀i.

We determine the weights λi by asking experts to compare pairs of security environment
contexts, identifying the corresponding system of equations and solving it. For example,
for the variables mentioned above we could pose the question:

How would you weight the relative importance of the number of mentions in

security blogs and negative mentions in social media regarding the likelihood of

receiving a successful harmful attack? Both numbers should add up to 100; the

higher the weight, the more impact you give to such variable (in the sense of

deeming more likely an attack).
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In this case, the expert’s answer should be a pair of numbers (λ1, λ2), which add up to
100. If both are 50, the expert considers both variables equally relevant when assessing
the security environment of the company, leading to the equation λ1 × e1 = λ2 × e2. We
introduce iterative schemes to come out with the pairs.

Ex T1 T2 T3 w1 w2 w3 w4

1 (70, 30) (30, 70) (50, 50) 0.292 0.125 0.292 0.292
3 (60, 40) (30, 70) (60, 40) 0.235 0.157 0.365 0.243
4 (10, 90) (10, 90) (50, 50) 0.006 0.052 0.471 0.471
5 (15, 85) (40, 60) (85, 15) 0.060 0.340 0.510 0.090
6 (60, 40) (30, 70) (70, 30) 0.257 0.171 0.400 0.171
7 (60, 40) (40, 60) (50, 50) 0.273 0.182 0.273 0.273
8 (70, 30) (30, 70) (50, 50) 0.292 0.125 0.292 0.292

0.202 0.165 0.372 0.262

Table 5: Environment responses of experts and weights

Table 5 includes the responses of our experts for the above questions with four environ-
ment variables and the seven retained experts. The minimum number of questions to be
posed to each of them is k−1, as the k-th equation relies on the restriction that all weights
should add up 100. We select overlapping pairs of environment variables for the questions,
comparing variables 1 and 2; 2 and 3; and, so on, until the (k−1)-th and k-th variables are
compared. To mitigate biases, the order in which the questions are posed is randomised.
Moreover, additional questions using other combinations of variables are added to check for
consistency. We then find the value function corresponding to each expert and aggregate
them with equal weights2.

Finally, we incorporate the environment and posture indices into the model using the
2Note that this refers to value judgements, not belief judgements as in Section 3
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procedure described in Section 4.1. First, we construct an scenario where no infections
are found by the TIS and ask the experts how much would the attack probability increase
assuming a certain value for one of the security environment variables, as in the following
example:

Assuming that the TIS has detected no evidence in the network concerning mal-

ware infections, how much would the attack probability increase if we detect a

value for the first environment variable equal to 10 and none for the others?

Since the rest of the environment variables are zero, we can compute the index value as
e = w1 ×m, where m = 10, and expand the attack vector. Continuing with the example
of malware infections, we have n = (0, 0, 0, e, 0), where the last two elements correspond
now to the environment and posture indices. Then, since we are asking for the increase in
probability and assuming the expert’s answer is ∆, we have pe = p0 + ∆ and again

βe = σ(pe)− β0

m
.

We apply the same procedure to incorporate the security posture. As before, consistency
questions are posed (using different environment variables and values for m).

4.3 Probability of attack transfer

Finally, we also ask the experts questions regarding the probability of an attack being
transferred from a supplier to the company. There are as many questions as attack types,
as we use the same probabilities for all suppliers. For each of the types, we aggregate the
experts’ probabilities. As an example, the probabilities for the transfer of malware attacks
were 0.3, 0.1 and 0.2, respectively, for experts 1, 6 and 7. The final aggregated probability,
using the weights in Section 3.3, is 0.282.
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5 Attack impact assessment

The final group of questions refers to information concerning the impacts of a successful
attack. They are different from the previous questions as they are company specific: for
example, even if the consequence of a successful attack may be the same for two companies,
like losing 1% of their customers, their economic impact in Euros will typically differ; the
unavailability period will depend on the company’s recovery capacity; and, finally, distinct
companies assess impacts differently. Thus, these questions are answered by in-company
experts instead of by general cyber security experts. In the same manner, such type
of information from the suppliers may not be readily available as its experts could have
no incentives to answer the required questions or even be unavailable for the necessary
elicitation exercise. In this case, the in-company experts may try to estimate what would
be the answer to the questions for the corresponding suppliers.

As before, we introduce a training session with the local experts as well as an eventual
aggregation procedure, should there be several of them available.

5.1 Relevant impacts

Relevant cyber attack impacts might change across organisations. In our supply chain area,
we have focused on downtimes, for both the company and its suppliers, and the induced
reputational damage.

We model the downtimes in hours with Gamma distributions (for the company and
suppliers). To obtain estimates of the parameters for these distributions, we ask the experts
for at least two of its quantiles, for instance, the first and the third quartiles. An example
question would be:

What is the duration of the downtime in hours due to malware at your or-
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ganisation such that you would expect 25% of the downtimes to be below this

value?

Once we obtain the quantiles, we use a least squares approach to estimate the parameters
of the distributions, as in Morris et al. (2014). We may ask additional quantiles to perform
consistency checks. As an example, in one case, an expert provided as first and third
quartiles, respectively, 2 and 6. The best fitting gamma distribution was Gamma(1.79,
0.40). After obtaining the distributions, we may compute centrality measures such as the
mean or the median, if required, or use them for simulation purposes.

We performed similarly in relation with reputational damage, estimating the proportion
of lost customers due to a certain type of attack with a Beta distribution.

5.2 Aggregating impacts

We aggregate the three types of impacts taking into account the costs associated with
unavailable services and the percentage of lost customers due to reputational damage. The
general expression would be c = κs × is + κc × ic + κd × nd × d, where κs, κc represent,
respectively, the average cost per hour of supplier and company interruption; is and ic,
respectively, symbolise the supplier and company service unavailability duration in hours;
κd, the cost lost per customer; nd, the number of customers; and, d, the proportion of
lost customers. For the required additional information, the corresponding questions are
straightforward and directly posed to in-company experts.

5.3 Utility elicitation

Should we wish to cater for the company’s risk attitude we would introduce an utility
function. A simple but very useful form of utility function arises when the relative risk
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aversion is set to a constant, in which case we have u(c) = 1 − exp(−ρ c) with ρ > 0.
To assess the risk tolerance parameter ρ, Keeney and Raiffa (1993), we ask the DM to
determine the largest stake cmax for which she would accept the 50-50 gamble


2cmax with probability 1

2 ,

−cmax with probability 1
2 .

This leads to the approximate expression ρ ≈ 1
2cmax

(González-Ortega et al., 2018). Con-
sistency checks would lead us to elicit additional values and iterative attempts to assess
such value.

6 Operational uses

We now have the necessary components to develop our SCCRM framework. We begin first
by sketching some of its potential uses. We then describe how to implement it, and finally
provide a numerical example.

6.1 Some uses

The above information may be summarised in several measures and indices that may be
used for risk monitoring and management purposes. These include attack probabilities
through different attack vectors, both through the various suppliers or the company, re-
sulting in a successful attack; the direct attack to the company probability; the induced
attack probabilities; and, the total attack probability. Recall that if an attack is success-
fully transferred from a supplier, there are unavailability and reputational costs. Thus, we
include also the expected impact due to direct attacks, the expected impact induced when
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a supplier is attacked and the total expected impact generated. Finally, we would also
employ the corresponding expected utilities.

As an example, we provide the expressions for two of such indices whose use we illustrate
in Figure 3. First, the attack probability to the company c through a specific attack vector
a is

pa
c = exp(βa

0 + βa · na
c)

1 + exp(βa
0 + βa · na

c) ,

where na
c represents the a-th attack vector count for the company c, including the environ-

ment and posture indicators. Based on them, the direct Attack probability to the company
is

APc =
|A|∑
k=1

∑
I∈CA,k

∏
a∈I

pa
c

∏
a∈A\I

(1− pa
c)
 ,

where CA,k is the set of all possible combinations of k elements taken from A. We describe
now how we use in our framework the risk indicators:

• Risk management. We set up warning and critical level alarms for the indices to
advise when specially dangerous situations have been detected. When such levels
are reached, as we have apportioned them to various sources (vector attacks and
suppliers), we may point to the most critical ones to try to act over them.

• Risk forecasting. Each of the indices mentioned above may be viewed as an observa-
tion of a time series. We may, therefore, introduce forecasting models (specifically,
we use dynamic linear models. Petris et al. (2009)) for such series to forecast whether
we shall reach the critical levels (through long-term forecasts) or which levels should
we normally expect in the near future (through short-term forecasts). These fore-
casts can also detect sudden changes in the behaviour of the series and, consequently,
potential security issues.
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• Supplier negotiations. We can use the indices produced to rank suppliers according
to the risk they induce. We can also use them to negotiate minimum induced security
requirements to demand actions to suppliers or negotiate service level agreements, say
requiring to maintain a risk induced level below a certain value to preserve business
continuity.

• Insurance. We may use the risk series generated to demonstrate low risk levels at the
incumbent company and, consequently, negotiate lower insurance premiums. Alterna-
tively, from the point of view of an insurance company, we could introduce insurance
products with variable premium depending on the risk indices integrated over time.
For example, an incentive could be introduced if, say, the average and maximum risk
indices, fall below a certain level over the contracted period of time.

6.2 Operations

The above framework has been implemented to support a dynamic approach to SCCRM
in conjunction with an available TIS. For a given company, the TIS periodically gathers
data, and the system computes the risk indices, provides various forecasts, issues warnings
and performs update operations as follows:

1. Obtain new attack vectors evaluating the security posture and environment of the
company and its suppliers.

2. Compute attack probabilities for suppliers and company, for various attacks and
globally.

3. Estimate the expected impacts and utility for the company.

4. Launch alarms depending on limits defined.
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5. Display risks associated with attack vectors and suppliers.

6. Predict risks for the next k-periods ahead.

7. (Update the probability models).

8. Proceed to the next period.

All of the tasks have been described above, except for the seventh one which refers to
updating the parameter distributions in the logistic regression and impact models through
MCMC methods as standard in Bayesian inference, see French and Insua (2000). This
would be possible as long as the company releases relevant data about attacks.

Figure 3 provides a trace of the model which runs periodically acquiring new probabil-
ities and costs. Specifically, we show the evolution for T = 100 time steps of the direct
attack probability (AP), the induced probabilities from two suppliers (IAP1, IAP2) and the
global attack probability GAP. Here, we can observe that from T = 0 to T = 40 suppliers 1
and 2 induced similar risks. However, from T = 40 we may prefer supplier 1 since it seems
to induce a lower risk to the company. We may fit DLMs (West and Harrison (2006); Petris
et al. (2009)) to forecast the attack probabilities k-steps ahead. Figure 3 presents the pre-
dictive distribution for k = 1, . . . , 20, from period 100, with the corresponding predictive
intervals.
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Figure 3: Trace of risk indices over time

7 Discussion

The proliferation of cyber attacks and the increasing interconnectedness of organisations
is framing the new field of SCCRM with several commercial solutions available. For repu-
tational reasons, organisations are reluctant to release data concerning attacks. Therefore,
we have sketched an approach to SCCRM which uses SEJ techniques to assess the param-
eters required to make the approach implementable. We have focused on how suppliers
may affect organisations, but the ideas extend to the impact of suppliers of suppliers, and
so on.
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We have presented here the SEJ aspects of the framework as well as its operational
implementation. We have covered issues concerning calibration of experts; eliciting attack
probabilities indirectly through logistic regression models; aggregating environment and
posture variables through multi-attribute value functions; directly eliciting transfer attack
probabilities; eliciting impact distributions through quantiles; and, finally, eliciting utilities
to cater for risk attitudes. We have also described how such information is integrated for
various risk management purposes. Mathematical details may be seen in Redondo et al.
(2018).

The whole framework has been implemented through Python routines based on a specific
TIS and is running successfully supporting several companies in their SCCRM duties. The
experience gained will allow us to further refine the framework; improve and/or expand the
attack vectors as well as the assessment of the environment and posture.
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Augmented Probability Simulation Methods

for Non-cooperative Games

Abstract

We provide an augmented probability simulation framework to solve non-cooperative
games, focusing on sequential problems. We include approaches to approximate sub-
game perfect equilibria under common knowledge conditions, assess the robustness
of such solutions and, finally, approximate adversarial risk analysis solutions when
lacking common knowledge. Cyber security examples serve for illustration.

Keywords: Games, Decision analysis, Adversarial risk analysis, Augmented probability
simulation, Markov chain Monte Carlo, Cyber security.
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1 Introduction

Non-cooperative game theory refers to conflict situations in which two or more agents make

decisions whose payoffs depend on the implemented actions of all of them, and, possibly,

on some random outcomes. Agents aim at maximising their payoffs. Under common

knowledge assumptions about the agents’ preferences and beliefs, the analysis is pervaded

by Nash equilibria, and related refinements, which constitute a prediction of the decisions to

be made by the agents. Ozdaglar and Menache (2011) provide a review, whereas Heap and

Varoufakis (2004) include an in-depth critical assessment. Adversarial risk analysis (ARA),

Banks et al. (2015), provides an alternative decision analytic approach aimed at one-sided

prescriptive support to one of the intervening agents based on a subjective expected utility

model treating the adversaries’ decisions as uncertainties. Their (random) optimal actions

are predicted taking into account the uncertainty about the adversaries’ probabilities and

utilities in an expected utility model of their behaviour. In contrast with game theoretic

approaches, the standard common knowledge hypothesis is not assumed.

Our realm in this paper is within algorithmic game theory, Nisan et al. (2007), and algo-

rithmic decision theory, ?, in that we aim at providing efficient algorithms to approximate

solutions for game theoretic problems, both in the standard and the ARA approaches. For

cases in which an analytical solution is not available or computationally expensive, sim-

ulation based approaches can be utilized. Among those, Monte Carlo (MC) methods are

straightforward to use and widely implemented. However, they can be inefficient in certain

conditions such as in presence of a high number of decision alternatives for the agents. For

instance, counter-terrorism and cyber security may involve thousands of possible decisions,

and there could be large uncertainties associated with the goals and resources of the terror-

ists. This can result in computational challenges especially in cases where model uncertainty
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dominates, Rios Insua et al. (2009). Sampling procedures that focus on high-probability

events have the potential to handle such computational challenges. In particular, we ex-

plore how augmented probability simulation (APS) may be used to compute game theoretic

solutions. APS is a powerful simulation based methodology used to approximate optimal

solutions in decision analytic problems, Bielza et al. (1999), as reviewed in Appendix 1.

We focus on sequential games with two agents: one of the agents makes a first decision

which is observed by the other one, who then makes his decision. We start by computing

subgame perfect equilibria with APS. We then apply robustness concepts to assess such

solution. If it is not robust, we use the ARA approach to find an alternative solution, with

the aid of APS. Again, we criticize it through sensitivity analysis concepts. We illustrate

the ideas with examples concerning cyber security and end up with some discussion.

2 Equilibria in sequential games through APS

2.1 The basic approach

We consider sequential games with two agents. As an example, consider a case in which a

company deploys certain cyber security controls and then, having observed them, a hacker

decides whether he launches a DDoS attack against such company. These games have

received various names in the literature including sequential Defend-Attack (Brown et al.,

2006) or Stackelberg (Gibbons, 1992).

To fix ideas, consider a case in which a Defender (she) chooses her defense d ∈ D and,

then, an Attacker (he) chooses his attack a ∈ A, after having observed d Except when noted,

we assume that both D and A are finite.. The corresponding bi-agent influence diagram

(Ortega et al., 2018) is shown in Figure 1. The arc between nodes D and A reflects that
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the Defender choice is observed by the Attacker. The consequences for both participants

depend on the success θ of the attack. Each decision maker has a different assessment on the

probability of the result of the attack, which depends on the defense and attack adopted,

designated pD(θ|d, a) and pA(θ|d, a). The utility function of the Defender uD(d, θ) depends

on her chosen defense and the result of the attack. Similarly, the Attacker’s utility function

has the form uA(a, θ).

ΘD A

UD UA

Figure 1: The two player sequential decision game.

The standard game theoretic solution does not require the Attacker to know the Defender’s

probabilities and utilities, since he observes the Defender’s actions. However, the Defender

must know the Attacker’s utilities and probabilities (uA, pA), the common knowledge con-

dition in this case. We, then, proceed as follows. First, we compute both agents’ expected

utilities at node Θ in Figure 1

ψA(a, d) =

∫
uA(a, θ)pA(θ|d, a) dθ, (1)

ψD(d, a) =

∫
uD(d, θ)pD(θ|d, a) dθ. (2)
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Then, we compute the Attacker’s best response to the Defender’s action d

a∗(d) = argmax
a∈A

ψA(d, a).

Knowing this, the Defender’s optimal action is

d∗GT = argmax
d∈D

ψD(d, a
∗(d)).

The solution (d∗GT, a
∗(d∗GT)) is a Nash equilibrium and, indeed, a sub-game perfect equilib-

rium, Heap and Varoufakis (2004). Note that we are using backwards induction for both

agents, switching from the Attacker to the Defender problem as required.

A generic MC approach to solving the problem is shown in Algorithm 1. From a

input: P , Q
for d ∈ D do

for a ∈ A do

Generate Q samples θ1, . . . , θQ ∼ pA(θ|a, d)

Approximate ψ̂A(a, d) =
1
Q

∑
uA(a, θi)

Find a∗(d) = argmaxa ψ̂A(a, d)
Generate P samples θ1, . . . , θP ∼ pD(θ|a

∗(d), d)

Approximate ψ̂D(d) =
1
P

∑
uD(d, θi)

Find d∗ = argmaxd ψ̂D(d)

Algorithm 1: MC approach to solve a sequential Defend-Attack problem

computational perspective, it requires generating |D|×(|A|×Q+P ) samples, in addition to

the cost of the final optimization and the |D| inner loop optimizations, where | · | designates

the cardinal of the corresponding set. When the sets A and/or D of alternatives are

continuous, we may introduce further discretization and/or sampling steps to appropriately

5



explore the alternatives available, or we could use a regression metamodel, as explained in

our final discussion.

In some cases, when dealing with decision dependent uncertainties, as is the case of

sequential Defend-Attack games, MC approaches may turn out to be extremely heavy

computationally. They require sampling from pD(θ|d, a) and pA(θ|d, a) for the defender’s

and the attacker’s problem respectively, and this entails loops over decision spaces D and

A. When D or A are high dimensional, considering the whole decision space as in MC,

this is unfeasible. We propose APS algorithms to address such challenges.

2.2 An APS approach

Recalling that uA and pA are assumed to be known by the Defender, the required common

knowledge assumption in this case, we provide an APS approach to approximate game

theoretic solutions for sequential defend-attack games. Indeed, it is a nested APS framework

similar to folding back a tree. For a given d, we introduce an artificial distribution, assuming

that uA(a, θ) is non-negative, in relation with Equation (1)

πA(a, θ|d) ∝ uA(a, θ)pA(θ|d, a). (3)

Its marginal on attacks satisfies πA(a|d) ∝ ψA(a, d). Consequently, the optimal attack

given the defense d is such that

a∗(d) = mode(πA(a|d)).
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Moving backwards in the tree, we introduce the artificial distribution

πD(d, θ|a
∗(d)) ∝ uD(d, θ)pD(θ|d, a

∗(d)). (4)

Its marginal πD(d|a
∗(d)) is proportional to ψD(a

∗(d), d), so that

d∗GT = mode(πD(d|a
∗(d))). (5)

Consequently, we may introduce a APS scheme to sample from πD(d|θ, a
∗(d)), such that,

in a preprocessing phase, computes a∗(d) for each d using another APS based on πA(a, θ|d).

In principle, we sample from both artificial distributions through a Gibbs sampler, Casella

and George (1992): in the attacker’s APS, for each d, we sample iteratively from πA(a|θ, d)

and πA(θ|d, a), whereas, in the defender’s APS, we sample iteratively from πD(d|θ, a
∗(d))

and πD(θ|d, a
∗(d)). The resulting procedure is summarized in Algorithm 2. This can be

preferred to MC when the Attacker have high dimensional decision spaces, as we avoid

iterating through the attacker’s alternatives.

The computational complexity of Algorithm 2 does not depend on the dimension of

the attacker’s decision space. This could be crucial when |A| is very big or continuous.

Recall that MC requires discretization of such space whereas APS does not. In particular,

Algorithm 2 requires 2 · (|D| ·M + N) samples plus the cost of convergence checks and

|D|+1 mode approximations. Thus, overall, Algorithm 2 would be more efficient than the

MC approach whenever the number of attacker’s alternatives is big (or continuous) and

the number of defender’s alternatives is small.

If the draws from the conditional distributions in Algorithm 2 are not readily avail-

able, we could use Metropolis-Hastings algorithm. The resulting algorithms for both the

Defender and Attacker are provided in Appendix 2. Turning to Metropolis-Hastings sam-
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input: N , M
initialize: a(0), θ(0)

for d ∈ D do

for j = 1 to M do

Draw θ
(j)
A from πA(θ|d, a

(j−1))

Draw a(j) from πA(a|θ
(j)
A , d)

Compute mode of M draws {a(j)} and record it as a∗(d)

initialize: d(0), θ(0)

for i = 1 to N do

Draw θ
(i)
D from πD(θ|d

(i−1), a∗(d(i−1)))

Draw d(i) from πD(d|θ
(i)
D , a

∗(d))

Compute the mode of N draws {d(i)} and record it as d̂∗GT

Algorithm 2: Nested APS

pling, also allows us to get rid of the loop over the defender’s decision space. Let us call

d and θ the current samples in the Metropolis scheme of the defender’s APS. Within each

iteration, we need to sample a candidate d̃ for the defender’s alternative from the proposal

distribution. Once it is sampled, we invoke an inner APS to compute a∗(d̃). Finally, we

accept the sample with probability πD(d̃, θ̃|a
∗(d̃))/πD(d, θ|a

∗(d)), being θ̃ the candidate for

uncertainty parameter. The computational complexity of this new procedure does not de-

pend on the dimensions of the attacker’s and the defender’s decision spaces. This will be

the optimal choice when facing a problem where the cardinality of these spaces is very big

or when they are continuous.

2.3 Sensitivity of the game theoretic solution

In the above setting, we could contend that since we are supporting the Defender, we know

(uD, pD) reasonably well. However, information about (uA, pA) may be not that precise,
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since it essentially requires the Attacker to reveal such judgments. This is questionable in

application areas in which information is concealed and hidden to adversaries, including

cybersecurity.

We may perform a sensitivity analysis by considering that the Attacker’s utilities and

probabilities are modeled through classes u ∈ UA, p ∈ PA, which summarize the information

available from the Attacker obtained through informants, leakage or earlier interactions.

For each pair (u, p), we compute the Nash defense d∗u,p, using the techniques from sections

2.1 and 2.2. After that, we need to assess whether the game theoretic solution remains

reasonably stable for the allowed perturbations of u and p. One possibility could be fo-

cusing on the regret ru,p(d
∗
GT) given by the difference in expected utility between the Nash

defense d∗GT and the Nash defense d∗u,p for (u, p). A small value of sup(u,p)∈UA×PA
ru,p(d

∗
GT)

would denote robustness with respect to the choice of utility and probability of the At-

tacker and, therefore, any pair (u, p) could be chosen with no significant changes in the

attainable expected utilities. Otherwise, we have an issue which questions the relevance of

the proposed Nash defense d∗GT. At a deeper level, it also questions the appropriateness

of the (uA, pA) assessment, actually serving to criticize the game theoretic assumption of

common knowledge. Operationally, a threshold on the maximum regret might be fixed such

that if exceeded, such assumption must be questioned. The whole procedure is illustrated

in Algorithm 3, in which B is determined based on the available computational budget.

We stress that, as this approach is implemented in an exploratory sense, we might not

need very big sample sizes (in Algorithm 2) thus enabling us to allocate more resources in

exploring a larger sample of (u, p)’s.
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input: d∗GT , UA, PA, threshold, B
for i = 1 to R do

Randomly sample u and p from UA and PA, respectively
Compute d∗u,p using Algorithm 2 (or its variants)

Compute ru,p(d
∗
GT)

if ru,p(d
∗
GT

) > threshold then

Robustness requirements not satisfied
Stop

Robustness requirements satisfied.

Algorithm 3: Robustness assessment of the game theoretic solution

3 ARA solution

3.1 The basic approach

We thus need to address the case when the game theoretic solution is not robust. One

way forward is to perform an ARA approach, Banks et al. (2015). For this, we weaken

the common knowledge assumption: the Defender does not know (pA, uA). The problem

she faces is depicted in Figure 2. To solve it, besides pD(θ|d, a) and uD(d, θ) available from

ΘD A

UD

Figure 2: The decision problem as seen by Defender.

our earlier discussion in Section 2, the Defender requires pD(a|d). This is her assessment
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of the probability that the Attacker will choose attack a after having observed that she

has chosen the defense d. Then, we can proceed as follows. First, the expected utility of d

would be

ψD(d) =

∫
ψD(a, d)pD(a|d) da =

∫ [∫
uD(d, θ)pD(θ|d, a) dθ

]
pD(a|d) da.

Finally, her optimal decision would be d∗ARA = argmaxd∈D ψD(d). This solution d
∗
ARA does

not need to correspond to a Nash equilibrium as both solutions are based on different

assumptions and information, see for instance the example in Section 4.

Eliciting pD(a|d) is facilitated if the Defender analyzes the problem from the Attacker’s

perspective, Figure 3. The Defender will use all the information and judgment available

ΘD A

UA

Figure 3: Defender’s analysis of Attacker’s problem.

to her about the Attacker’s utilities and probabilities. Instead of using point estimates for

pA and uA to find the Attacker’s optimal decision a∗(d) for a given d, as in Section 2, the

Defender’s uncertainty about the Attacker’s decision would derive from her uncertainty

about (pA, uA), through a distribution F = (UA, PA) on the space of utilities and proba-

bilities, which we designate random probabilities and utilities. This induces a distribution

over the Attacker’s expected utility in (1), where the random expected utility for A would
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be ΨA(a, d) =
∫
UA(a, θ)PA(θ|a, d) dθ. Then, the Defender would find

pD(a|d) = PF

[
a = argmax

x∈A

ΨA(x, d)

]
, (6)

in the discrete case and, similarly, in the continuous one. In general, we use MC simulation

to approximate pD(a|d) by drawing J samples {(P i
A, U

i
A)}

J

i=1 from F and setting

p̂D(a|d) ≈
#{a = argmaxx∈A Ψi

A(x, d)}

J
, (7)

where Ψi
A(a, d) =

∫
U i
A(a, θ)P

i
A(θ|a, d) dθ.

Algorithmically, it consists of a sequential use of MC simulation to estimate pD(A
∗ =

a|d) and, then, the use of expected utility maximization, as shown in Algorithm 4. Note

input: J
for d ∈ D do

for i = 1 to J do

Sample uiA(a, θ) ∼ UA(a, θ)
Sample piA(θ|a, d) ∼ PA(θ|d, a)
Compute a∗i (d) as argmaxa

∫
uiA(a, θ)p

i
A(θ|a, a) dθ

p̂D(A
∗ = a|d) = 1

J

∑J

i=1 I[a
∗
i (d) = a]

Solve maxd
∫ ∫

uD(d, θ)pD(θ|a, d)p̂D(A
∗ = a|d) dθ da

Algorithm 4: MC approach to solve the ARA problem

that to solve the optimization problems in d and a, we shall also typically use an MC

approach. Algorithm 4 requires generating |D| · (|A| · Q · J + P ) samples, where Q

and P are the number of samples required to approximate
∫
uiA(a, θ)p

i
A(θ|a, a) dθ and

maxd
∫ ∫

uD(d, θ)pD(θ|a, d)p̂D(A
∗ = a|d) dθ da, respectively.

We now turn to the APS approach for the ARA problem. We first provide several
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observations concerning the relevant augmented probability models and, then, outline the

algorithms. To start with, we replicate the argument in relation with Equation (3), with

random utilities and probabilities. For a given d, we introduce the artificial random distri-

bution

ΠA(a, θ|d) ∝ UA(a, θ)PA(θ|a, d),

whose marginal ΠA(a|d) is proportional to the random expected utility ΨA(a, d). Slightly

abusing notation, the random optimal attack coincides with the mode of the marginal of

the random augmented distribution

A∗(d) = mode (ΠA(a|d)).

Based on it, we build pD(a|d) as in Equation (6). Then, moving backwards, we introduce

the artificial distribution

πD(d, a, θ) ∝ uD(d, θ) pD(θ|a, d) pD(a|d),

whose marginal in d satisfies πD(d) ∝ ψD(d), so that

d∗ = mode (πD(d)).

Based on this argument, we propose a nested APS algorithm, Algorithm 5, which emulates

the tree fold back approach, estimating directly πD(a|d) and then optimizing.

From a computational perspective, Algorithm 5 requires generating |D|·(2·M ·J)+3·N

samples from multivariate distributions in addition to the cost of the convergence checks

and mode computation.

13



input: N,M, J
for d ∈ D do

for j = 1 to J do

Sample U j
A, P

j
A and define Πj

A

Initialize θ0

for i = 1 to M do

Sample a(i) from Πj
A(a|θ

(i−1), d)

Sample θ(i) from Πj
A(θ|a

(i), d)

Estimate a∗j as mode of {a(i)}

Estimate pD(a|d) from {a∗j}

Initialize (d(0), θ(0))
for i = 1 to N do

Draw d(i) from πD(d|a
(i−1), θ

(i−1)
D )

Draw θ
(i)
D from πD(θ|a

(i−1), d(i))

Draw a(i) from πD(a|d
(i), θ

(i)
D )

Estimate d∗ as mode of {d(i)}
.

Algorithm 5: Nested APS approach to solve the ARA problem

3.2 Sensitivity analysis of the ARA solution

The above approach leads to a decision analysis problem with the peculiarity that it includes

a sampling procedure to forecast the adversary’s actions.

A sensitivity analysis can be conducted with respect to the inputs of the Defender’s

decision analysis, which are (uD(d, θ), pD(θ|a, d), pD(a|d)). Our focus is on the sensitivity to

the last component pD(a|d), the most contentious one as it is obtained through adversarial

calculations based on the random utility UA(a, θ), and the random probability distribution

PA(θ|a, d). For that, we could define classes UA, PA of random utilities and probabilities.

For each pair U, P in such class, we define pUP
D (a|d) through the ARA approach which,
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in turn, leads to d∗UP
ARA. Then, we may consider the impact of the imprecision about U

and P over the attained expected utility ψ(d∗UP
ARA), We would say that sensitivity holds if

the maximum expected utility changes considerably when the input parameters change, in

which case we also need to check whether the ARA solution changes as well.

If the ARA results are sensitive, we may opt for gathering additional information to

reduce the classes UA and PA. Once all possible sources of information have been exploited

to increase robustness about d∗ARA without success, an extra criterion would need to be

introduced to make a decision and report a value about the quantity of interest. In any

case, such decision should be reported with a warning of lack of robustness. We could

consider, e.g., the decision d∗R minimizing the maximum regret, i.e.

min
d

max
U∈UA,P∈PA

[∫
ψD(a, d

∗UP
ARA)p

UP
D (a|d∗UP

ARA)da−

∫
ψD(a, d)p

UP
D (a|d)da

]
.

All of the above may be embedded in an appropriate simulation scheme, much as we did

in Section 2.3 with the game theoretic approach.

4 An illustrative example

We illustrate the proposed framework through a simple sequential defend-attack cyber

security problem. An organization needs to decide its security protocol, either through a

safe, but costly route, or through cheaper, but more dangerous protocols with different

protection levels, rendering business performance increasingly at risk.
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4.1 Problem structure

Assume that the Defender has the following ten protocols: d = 0 : do nothing, i.e. no

defensive action is taken; d = 1 : use a level 1 protection protocol; d = 2, . . . , 8 : use

increasing levels of protection; d = 9 : use the very safe but cumbersome protocol. In turn,

the attacker has two alternatives: attack (denoted a = 1); no attack (a = 0.) Successful

(unsuccessful) attacks are, respectively, denoted by θ = 1 (θ = 0). Clearly, when there is

no attack (a = 0), we necessarily have θ = 0.

θ

d 0 1

0 0.05 7.05
1 0.10 7.10
2 0.15 7.15
3 0.20 7.20
4 0.25 7.25
5 0.30 7.30
6 0.35 7.35
7 0.40 7.40
8 0.45 7.45
9 0.50 7.50

(a)

a

d 0 1

0 0.0 0.50
1 0.0 0.40
2 0.0 0.35
3 0.0 0.30
4 0.0 0.25
5 0.0 0.20
6 0.0 0.15
7 0.0 0.10
8 0.0 0.05
9 0.0 0.01

(b)

θ

a 0 1

0 0.00 0.00
1 -0.53 1.97

(c)

d α β

0 50.0 50.0
1 40.0 60.0
2 35.0 65.0
3 30.0 70.0
4 25.0 75.0
5 20.0 80.0
6 15.0 85.0
7 10.0 90.0
8 5.0 95.0
9 1.0 99.0

(d)

Table 1: (a) Defender’s costs; (b) Successful attack probabilities; (c) Attacker’s costs; and
(d) Beta distribution parameters

4.2 Defender’s non strategic judgments

We assess the Defender’s non strategic judgments. Table 1a presents the costs cD associated

with each defender decision d and outcome θ of the success of the attack. The business
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expected valuation of the defender is assumed to be 7M euros. Each increase in security

level is assumed to cost 0.05M euros. The Defender’s probability vector of a successful

attack for each of the attacking actions and defender decisions is shown in Table 1b, with

complementary probabilities for unsuccessful attacks (for example, pD(θ = 0|a = 1, d =

2) = 1 − 0.35). The Defender is constant risk averse with respect to monetary costs.

Thus, her utility function is strategically equivalent to uD(cD) = − exp (c ∗ cD) with c > 0.

Suppose that c is equal to 0.4.

4.3 Attacker judgments

Consider now the Attacker problem. The average cost of an attack operation is estimated

at 0.03M Euros and the eventual average benefit (market share obtained, potential ransom,

etc.) is assumed to be 2M Euros. We assume that the cost of the attack is 0.5M Euros

if the attack is repelled. Table 1c presents the attacker profit level cA associated with

each attack decision a and outcome θ of the attack. Qualitatively, the Defender thinks

the Attacker is constant risk prone over money. Therefore, she considers that his utility

function is strategically equivalent to uA(cA) = exp (e · cA) with e modeling the Attacker

risk attitude.

4.4 Game theoretic approach

Assuming common knowledge, we set pA(θ = 1|a, d) = pD(θ = 1|a, d). Particularly, the

Attacker probabilities pA(θ = 1|a = 1, d) are reflected in Table 1b. With respect to uA, the

value of e is set at 1.

To compute the solution we use the MC and nested APS approaches described in

Algorithms 1 and 2, respectively. In the nested APS, we use a Metropolis-Hastings scheme
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(a) MC solutions (b) Nested APS solutions

Figure 4: Solutions of the attacker problem for each defense

to sample from the marginal conditionals. Firstly, for each defense strategy d, the optimal

attack a∗(d) has been computed. Figure 4a represents the expected MC estimation of the

attacker expected utility for each d and a. The optimal attack for each d is that having

maximum expected utility. For example, for d = 5 the attacker’s optimal decision is to

perform the attack, whereas for d = 8 he should decide not to attack. Note that when there

is no attack (a = 0), the cost for the attacker is always null, and consequently the utility is

constant and equal to 1. Figure 4b represents, for each d, the results of sampling from the

augmented distribution πA(a, θ|d) marginalized on a, in terms of frequency of occurrence.

The mode of such distribution coincides with the optimal attack. For example, for d = 9

the mode is a = 0 and, consequently, the optimal solution is not to attack. As can be seen,

for defenses running from 0 (no defensive action), until 7 (level 7 protocol), the attacker

should attack. But if we adopt stronger defenses, the attack should be avoided.

Armed with a∗(d), we compute the optimal defense, using again APS and MC. Figure

5a presents the MC estimation of ψD(d, a
∗(d)) for each d; and 5b, the frequency of samples

from the marginal augmented distribution πD(d|a
∗(d)). As expected, both methods agree
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(a) MC solution (b) APS solution

Figure 5: Solutions of the defender problem

that the optimal decision is acquiring level 8 protection, which is the cheapest decision that

avoids being attacked, under the common knowledge hypothesis.

4.4.1 Robustness of the game theoretic solution

We next compute the optimal defense for K = 1000 small perturbations of uA(cA) and

pA(θ|d, a). To build such perturbations, we sample e′ ∼ U(0, 2), and use u′A(cA) =

exp (e · cA); if pA(θ|d, a), obviously pA(θ = 1|d, a = 0) = 0 for all d; to perturb pA(θ|d, a = 1)

we sample from a beta distribution with parameters α and β specified in Table 1d for each

possible d.

Figure 6 reflects the frequency with which each d was optimal. d∗ = 8 was the solution

of the original problem and emerges around 36% of the time as optimal. However, the

solution is not very stable since inducing small perturbations in the utilities and success

probabilities leads to other solutions appearing 27% of the time (d = 7) and 21% of the

time (d = 9). Nevertheless, variations in expected utility are not that big. The value of

the maximum regret obtained in this case was 0.23, which represents a 1.21% of the total
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Figure 6: Sensitivity analysis of the game theoretic solution

expected utility. Thus, we can conclude that the game theoretic solutions is robust to these

small perturbations.

4.5 ARA approach

We next relax the common knowledge assumptions describing the Defender’s beliefs over

the Attacker’s judgments through PA and UA. Assuming that the Attacker knows the

Defender’s decision, the probability of success for the Attacker will be modeled as PA(θ =

1|a = 1, d) ∼ Beta(α, β) with parameters α and β, dependent on the defense, specified in

Table 1d; their expected values are set equal to pD(θ = 1|a, d) from the game theoretic

setting under common knowledge. In addition, we assume uncertainty over e with e ∼

U(0, 2), which induces the uncertainty over UA(cA).

Their forecast pD(a|d) over attacks a, given the defenses d is presented in Figure 7.

Figure 7a presents the estimates using MC, Algorithm 4. Figure 7b those with the nested

APS approach in Algorithm 5. Both solutions coincide up to numerical errors. With the
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(a) MC estimation of pD(a|d) (b) APS estimation of pD(a|d)

Figure 7: Estimation of pD(a|d) through ARA

(a) MC solution (b) APS solution

Figure 8: ARA solutions for the defender
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forecast over the attacks, we compute the ARA optimal solution for the defender. Figure 8a

shows the MC estimation of the defender’s expected utility. Figure 8b shows the frequency

of samples from the marginal augmented distribution πD(d). The mode of this distribution

coincides with the optimal defense, d∗ARA = 9, in agreement with the MC solution.

We emphasize that the ARA solution does not correspond with a Nash equilibrium.

Note that in this case, the ARA solution appears to be more conservative, as it suggests a

safer, although more expensive, defense. Of course, as in any decision analysis, we could

perform sensitivity analysis with, e.g. alternate c values, say between 0.1 and 1.

5 Discussion

We have considered the problem of supporting a decision maker who faces adversaries such

that the consequences attained are random and depend on the actions of all participating

agents. The prevalent paradigm is Game Theory. We can also view the problem as a

decision analytic one through ARA. We have presented a full approach to the problem,

switching from the game theoretic to the ARA concept when the common knowledge as-

sumption is questionable. Essentially, the procedure could be summarized as follows: under

common knowledge assumptions, the game theoretic solution can be computed and subject

to an appropriate sensitivity analysis. If stable, such solution may be used with confidence

and no further analysis is required. Otherwise, the common knowledge assumption is ques-

tioned and we use ARA as an alternative decision analytic approach. If the ARA solution

is found to be stable as a result of the sensitivity analysis, it may be used with confidence

and the analysis stops. Otherwise, more data must be gathered and relevant classes must

be refined, eventually declaring the robustness of the ARA solution; if not sufficient, a

minimum regret (or other robust) analysis can be undertaken.
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We have shown how MC and APS can be used for solving game theoretic and ARA

models while discussing their computational complexity, see Table 2 for a summary. As

can be seen, the number of MC samples depends on the cardinality of the Attacker’s

decision space, while this dependence is not present in APS. Thus, in problems in which

the adversary’s decision space is very big or even continuous, APS would be more efficient

than performing MC.

MC APS

GT |D|
(
|A| ·Q+ P

)
2
(
|D| ·M +N

)

ARA |D|
(
|A| ·Q · J + P

)
|D|

(
2 ·M · J + 3 ·N

)

Table 2: Number of samples required by MC and APS algorithms for game theoretic and
ARA

In the game theoretic framework, Algorithm 7 can be used to remove dependence of

the complexity on the cardinality of the Defender’s decision space as well. This algorithm

would thus be more efficient than MC in problems in which the defender’s decision space

is very big or continuous. In addition, in the case of continuous decision spaces, APS

could provide solutions with arbitrary precision, while MC is limited to the precision of

the discretization of the corresponding decision space. A promising approach in problems

with continuous decision spaces could consist on using MC to limit the area of the decision

space where the optimum is located, and then switch to an APS approach to search within

that area in more detail.

Moreover, MC errors associated with approximating the expected utility can overwhelm

the calculation of the optimal x∗. Moreover, samples from p(θ|x) will typically need to be

recomputed for each x. In contrast, APS performs the expectation and the optimization
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simultaneously. It draws samples of x from decision regions with high objective function

values, whereas draws of θ are tilted away from the conditional density p(θ|x) towards

the artificial distribution: the approach concentrates on “smart” values of θ where the

importance function is the objective function that tightens around the optimal x∗, when

convergent. Overall, sampling in a utility-tilted way helps to draw the random parameter

θ more frequently from where it leads to higher utility. This reduces the MC error as less

optimization effort is wasted in parts of the parameter space with low objective function

values, resulting also in typically reducing sample sizes.

Apart from computational issues, note also that when the surface of the expected util-

ity function is flat, MC simulation may need many draws or may result in poor estimates.

Something similar can be argued for non-symmetric distributions. For instance, in a cyber-

security one may have a low probability for a scenario which has catastrophic consequences.

MC simulation may not be able to take that into account. APS can deal with those cases

since it is based on sampling from the optimizing portions of the decision space. Even in

cases with very flat expected utility surfaces, APS can be improved by replacing the ex-

pected utility surface by a power transformation that uses a more peaked surface without

changing the solution of the problem (Müller, 2005). This property is similar to simulated

annealing (Kirkpatrick et al., 1983) that powers up the function to be maximized to find

its optimum. See Müller et al. (2004), Jacquier et al. (2007) and Aktekin and Ekin (2016)

for such implementations.

Finally, we have focused on the sequential two stage game problem. The ideas may

be extended to other types of games, like the simultaneous Defend-Attack one (Rios and

Rios Insua, 2012). In addition, it may be worth exploring cases in which there are several

adversaries.
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Appendix

Appendix 1: Augmented probability simulation

We provide an outline of APS. It was initially proposed in Bielza et al. (1999) and further

extended in Müller et al. (2004) to solve decision analysis problems with the aid of Markov

chain Monte Carlo (MCMC) procedures. Ekin et al. (2014) utilized it to solve two stage

stochastic programs with recourse, whereas Ekin et al. (2017) and Ekin (2018) used it for

extensions within the simulation based stochastic programming context.

APS treats the decision variables as random and converts the decision analysis problem

into a simulation one in the joint space of both decision and random variables, creating

an auxiliary distribution proportional to the product of the utility function and the origi-

nal distribution. Simulating from this auxiliary distribution solves simultaneously for the

expectation of the objective function and the optimization problem: the marginal mode

over the decision variable provides the optimal decision. The strategy can accommodate

arbitrary non-negative utility functions and probability models.

Suppose that we aim at finding the decision x∗ ∈ X maximizing the expected utility

ψ(x) =

∫
u(x, θ)p(θ|x) dθ, (8)

where x is the decision to be made and X is the feasible set; u(x, θ) is the utility function; θ

is the random state; and p(θ|x) is the incumbent probability distribution which depends on

the decision made. Suppose that u(x, θ) is non-negative. We define an auxiliary distribution

π(x, θ), which we call augmented probability, such that

π(x, θ) ∝ u(x, θ)p(θ|x). (9)

25



Observe that its marginal distribution over the decisions is π(x) ∝
∫
u(x, θ)p(θ|x) dθ, thus

being proportional to the expected utility ψ(x). Then, the optimal x∗ coincides with the

mode of the marginal distribution π(x).

Note that MC simulation approaches Equation (8) by first estimating the expected

utility through an MC average, ψ̂(x), computed using N independent MC samples from

p(θ|x),

ψ̂(x) =
1

N

N∑

i=1

u(x, θ(i)).

We then optimize ψ̂(x) over x, Shao (1989).

We usually simulate from the augmented model π(x, θ) using MCMC methods, Gamer-

man and Lopes (2006). Particularly, we utilize Gibbs sampling which iteratively samples

from the conditional distributions π(x|θ) and π(θ|x), resulting in samples from the joint

distribution in the limit under appropriate conditions (Casella and George, 1992). Thus,

this requires simulation from the conditional distribution π(θ|x), a ‘tilted’ version of p(θ|x)

as π(θ|x) ∝ u(x, θ)p(θ). In addition, we need to be able to simulate from π(x|θ). Non-

standard conditional distributions may require the use of Metropolis-Hastings steps to draw

samples (Chib and Greenberg, 1995).

The application of APS requires a non-negative utility function to get a proper proba-

bility density function. Adding a large enough number to the utility will do that without

changing the nature of the aforementioned distributions. When the Markov chain has con-

verged, the mode of the marginal samples of x approximates the optimal solution. Practical

convergence may be assessed, e.g., with the aid of the Brooks-Gelman-Rubin (BGR) statis-

tics, Brooks and Roberts (1998), among other possibilities.
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Appendix 2

Recalling Equations (4) and (5), if we sample pairs (d, θ) from the augmented distribution

πD(d, θ|a
∗(d)) and marginalize them to the space of alternatives, we could approximate

the game theoretic solution by the mode of such samples. Algorithms 6 and ?? propose

MCMC Metropolis schemes to sample from πD(d, θ|a
∗(d)) avoiding loops over decision

spaces; Algorithm 6 serves as subroutine within Algorithm ??.

input: d, M , K, gA symmetric distribution
initialize: a(0), θ(0) ∼ pA(θ|d, a

(0))
for i = 1 to M do

Propose a new attack ã ∼ gA(ã|a
(i−1)).

Draw θ̃ ∼ pA(θ|d, ã).
Evaluate the acceptance probability

α = min

{
1,

uA(ã, θ̃)

uA(a(i−1), θ(i−1))

}
.

With probability α set a(i) = ã and θ(i) = θ̃.

Discard the first K samples and compute mode of the rest of draws {a(i)}. Record it
as a∗(d).

Algorithm 6: APS for solving the attacker’s problem.
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input: N , J ,gD symmetric distribution
initialize: d(0)

Compute a∗(d(0)) using Algorithm 6 and store it.

Draw θ(0) ∼ pD(θ|d
(0), a∗(d(0))).

for i = 1 to N do

Propose a new defense d̃ ∼ gD(d̃|d
(i−1)).

Read a∗(d̃) if available, otherwise compute it using Algorithm 6 and store it.

Draw θ̃ ∼ pD(θ|d̃, a
∗(d̃).

Evaluate the acceptance probability

α = min

{
1,

uD(d̃, θ̃)

uA(d(i−1), θ(i−1))

}

With probability α set d(i) = d̃, a∗(d(i)) = a∗(d̃) and θ(i) = θ̃.

Discard the first J samples and compute mode of rest of draws {d(i)}. Record it as

d̂∗GT .

Algorithm 7: APS for solving the defender’s problem.
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Müller, P., Sansó, B., and De Iorio, M. (2004). Optimal Bayesian design by inhomo-

geneous Markov chain simulation. Journal of the American Statistical Association,

99(467):788–798.

Nisan, N., Roughgarden, T., Tardos, E., and Vazirani, V. V. (2007). Algorithmic Game

Theory, volume 1. Cambridge University Press Cambridge.

Ortega, J., Rios, D., and Cano, J. (2018). Bi-agent influence diagrams from an adversarial

risk analysis perspective. Tech. Report.

Ozdaglar, A. and Menache, I. (2011). Network Games: Theory, models, and dynamics.

Morgan & Claypool Publishers.

Pincus, M. (1970). A Monte Carlo method for the approximate solution of certain types

of constrained optimization problems. Operations Research, 18(6):1225–1228.

Rios, J. and Rios Insua, D. (2012). Adversarial risk analysis for counterterrorism modeling.

Risk Analysis, 32:894–915.

30



Rios Insua, D., Rios, J., and Banks, D. (2009). Adversarial risk analysis. Journal of the

American Statistical Association, 104(486):841–854.

Shao, J. (1989). Monte Carlo approximations in Bayesian decision theory. Journal of the

American Statistical Association, 84(407):727–732.

31



  

Reference : CYBECO-WP3-D3.1-v2.0-CSIC 
Version : 2.0 
Date 

 

: 2018.04.23 

P 
Page :   Annexes 

D3.2: Improved modelling framework for cyber risk management 
 

   

 

 

 

 

Annex 7: Paper: Risk-based Selection of Mitigation 

Strategies for Cybersecurity of Electric Power 

Systems

 



























  

Reference : CYBECO-WP3-D3.1-v2.0-CSIC 
Version : 2.0 
Date 

 

: 2018.04.23 

P 
Page :   Annexes 

D3.2: Improved modelling framework for cyber risk management 
 

   

 

 

 

 

Annex 8: Paper: Adversarial Risk Analysis for 

Structured Expert Judgement Modelling

 



Adversarial Risk Analysis for Structured Expert

Judgement Modelling

Abstract

We argue that adversarial risk analysis may be incorporated into the structured

expert judgement modelling toolkit for cases in which we need to forecast the ac-

tions of competitors or adversaries. This is relevant in areas such as cybersecurity,

security, defense and competitive business. We also illustrate key concepts and

modelling strategies in ARA.

Keywords: Structured expert judgement, adversarial risk analysis, decomposi-

tion, security, cybersecurity.

1 Introduction

Structured Expert Judgement (SEJ) elicitation has a long history of successes, both in

methodology and application, many of which stem from Roger Cooke’s work, e.g. Cooke

(1991) and Goossens et al. (1998). Hence, it has become a major ingredient within the

risk and decision analysis practice (Bedford and Cooke, 2001). A significant feature of

these disciplines, as acknowledged in the classic book by Raiffa (1968), is their emphasis

in decomposing complex problems into smaller pieces that are easier to handle and then

recombining the piecewise solutions to tackle the global problem. Examples of such

decomposition principles include:

• The exercise of decision analysis, as in French and Rı́os Insua (2000) or Clemen

and Reilly (2013). This methodology seeks to solve complex decision making prob-

lems by the principle of maximising expected utility. In doing so, one avoids direct

comparison of alternatives which, in the context of uncertainty and multiple objec-

tives, may be cognitively intricate and prone to bias. Instead, one first structures

the problem by identifying decisions, uncertainties and objectives, assessing beliefs

and preferences and then finding the alternative with maximum expected utility.

1



Problem structuring is typically presented as the first stage of a decision or risk

analysis cycle. The value of such a decomposition is assessed in Watson and Brown

(1978).

• Preference assessment also uses decomposition. It may be difficult to compare

consequences of alternatives without determining a utility function, specially in

presence of multiple conflicting attributes. A typical approach is to search for a

decomposable functional form (often additive, linear or multilinear, e.g. González-

Ortega et al. (2018)), and then assess the component utilities and weights in order

to recompose the global utility function whose expected value must be maximised.

Ravinder and Kleinmuntz (1991) provide theory showing the advantages of under-

taking such decompositions in utility assessment, given certain conditions.

• Belief assessment also benefits from decomposition, typically through the argument

of extending the conversation. Rather than directly assessing the probability of an

outcome, one finds a conditioning partition and assesses the probabilities of the

outcome given the conditioning events. From these, and the probabilities of the

conditioning events, the law of total probabilities enables calculation of the uncon-

ditional probability of the outcome. Ravinder et al. (1988) and Andradottir and

Bier (1997, 1998) provide a methodological framework to validate the advantages

of this approach, evaluated empirically in e.g. MacGregor and Kleinmuntz (1994)

and MacGregor (2001). Tetlock and Gardner (2015) call this approach Fermitisa-

tion and present it as a key strategy for the success of their super-forecasters.

To sum up, various forms of decomposition pervade risk and decision analysis. They

simplify the complex cognitive tasks and mitigate expert reliance on heuristics that can

introduce bias, ensuring that experts and decision makers actually analyse their decision

making problems (Montibeller and von Winterfeldt, 2015). The decomposition typically

entails more assessments, though these tend to be simpler and more meaningful, leading

to better decisions.

In this paper, we present Adversarial Risk Analysis (ARA) (Rı́os Insua et al., 2009;

Banks et al., 2015) as a decomposition strategy for game theoretic problems studied

from a Bayesian perspective. ARA stems from the observation that common knowledge

assumptions in standard game theoretic approaches, based on Nash equilibria and their

refinements, do not hold in many applications, such as counterterrorism or cybersecurity,

since competitors try to conceal information. We formulate the problem as a Bayesian

game, as described in Kadane and Larkey (1982) and Raiffa (1982), and operationalise

the approach by providing procedures to forecast the actions of the adversary.
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ARA can be complex because the opponent strategises intelligently. But ARA is a

powerful decomposition tool in finding solutions. ARA provides prescriptive support to

one of the agents (D, she), based on a subjective expected utility model for a probability

distribution of the decisions of the adversary (A, he). D models A’s decision problem

and, assuming that he is an expected utility maximiser (or has some other criterion, as

in prospect theory), tries to assess his probabilities and utilities. If these were known,

she could identify his optimal action. However, her uncertainty about A’s probabilities

and utilities is propagated to his decisions, leading to a probability distribution over his

actions. ARA can be framed as a tool for SEJ elicitation when we need to deal with

probabilities referring to actions by opponents. As an example, in Chen et al. (2016)

nearly 30% of the questions posed to experts somehow involved adversaries (e.g. Will

Syria use chemical or biological weapons before January 2013? ).

After sketching the ARA approach (Section 2), we show how this strategy can ac-

tually improve non-structured expert assessment of the opponent’s actions (Section 3).

We then propose several ways to implement ARA in practice (Section 4), include a

numerical example (Section 5), and end with a discussion (Section 6).

2 ARA in Sequential Games

To simplify the discussion, we focus on sequential Defend-Attack games: agent D first

makes her decision d ∈ D, then agent A observes d and chooses his alternative a ∈ A.

The outcome is usually a random variable whose distribution depends upon a and d. As

an example, imagine that a company deploys cybersecurity countermeasures and then,

having observed them, a cybercriminal decides whether to launch an attack. The cost

to the company is a random variable that is conditioned upon both decisions.

The corresponding bi-agent influence diagram (Banks et al., 2015) is shown in Figure

1. The dashed arc reflects the fact that D’s decision is observed by A, before he makes

his decision. The consequences for both players relate to the outcome s ∈ S of the

interaction. Each decision maker conducts their own assessment of the probability of

outcome s, pD(s | d, a) and pA(s | d, a) for D and A, respectively, which depends on both

their decisions d and a. The utility function uD(d, s) of D is subject to her choice d and

the result s. Similarly, A’s utility function is uA(a, s). In some situations an agent’s

utility function may depend upon the choices of both opponents, as well as the outcome.
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SD A

uD uA

Figure 1: The two player sequential decision game.

The ARA approach weakens the standard, but unrealistic, common knowledge assump-

tion in game theoretic approaches (Hargreaves-Heap and Varoufakis, 1995), according

to which the agents share information about their probabilities and utilities. In our case,

not having common knowledge means that D does not know (pA, uA). The problem she

faces is depicted in the influence diagram in Figure 2.

SD A

uD

Figure 2: The decision problem as seen by D.

To solve this problem D requires, besides pD(s | d, a) and uD(d, s) mentioned above, the

distribution pD(a | d), which is her assessment of the probability that A will choose action

a after having observed her choice d. Once D has completed these assessments, she can

compute the expected utility of d as

ψD(d) =

∫ [∫
uD(d, s) pD(s | d, a) ds

]
pD(a | d) da,

and seek the optimal decision d∗ARA = arg maxd∈D ψD(d).

Eliciting pD(a | d) is complicated since it entails strategic elements. D could try to

assess it from a standard SEJ perspective, as in Cooke (1991) or O’Hagan et al. (2006),

but ARA usefully suggests a decomposition approach that requires her to analyse the

problem from A’s perspective, as shown in the influence diagram in Figure 3.
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SD A

uA

Figure 3: D’s analysis of the decision problem as seen by A.

First, D puts herself in A’s shoes. She would use all the information she can obtain about

A’s probabilities, utilities and strategy, assuming he is an expected utility maximiser.

Then, instead of using point estimates for pA and uA in order to find A’s optimal response

for a given d, her uncertainty about A’s decision should derive from her uncertainty

about (pA, uA), through a distribution F on the space of probabilities and utilities. This

induces a distribution over A’s expected utility, where his random expected utility is

ΨA(d, a) =

∫
UA(a, s)PA(s | d, a) ds,

for (PA, UA) ∼ F . Then D finds

pD(a | d) = PF [a = arg maxx∈A ΨA(d, x)] ,

in the discrete case, and analogously in the continuous one. She can use Monte Carlo

simulation to approximate pD(a | d), as shown in Sections 3 and 5.

The above approach extends to simultaneous decision making problems, general in-

teractions between both agents, multiple agents, agents who employ principles different

than maximum expected utility, as well as to other situations presented in Banks et al.

(2015). Here we exclusively explore the relevance of ARA as part of the SEJ toolkit.

3 ARA as a Decomposition Approach

We study ARA as a decomposition approach within the sequential Defend-Attack model

described above. There are two possible ways to assess distribution pD(a | d) needed for

D’s decision:

• One could do it directly with standard SEJ procedures (Cooke, 1991). Denote

such assessment by pSEJD (a | d).

• Otherwise, one could assess it indirectly through ARA as in Section 2. D would

assess A’s beliefs and preferences from her own uncertain perspective, represented
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by (PA, UA) ∼ F , and then solve A’s decision making problem using these random

probabilities and utilities by computing

pARAD (a | d) = PF
[
a = arg maxx∈A

∫
UA(x, s)PA(s | d, x) ds

]
.

To compare both the SEJ and ARA approaches, it is convenient to make three simplify-

ing assumptions: (i) D, whom we support, has only two options, defend (d1) or not (d0);

(ii) A can solely choose to attack (a1) or not (a0); and (iii) if A decides to attack, the

only two outcomes are success (s1) or failure (s0). For A, the problem can be viewed as

the decision tree in Figure 4, with d ∈ {d0, d1}, which parallels the influence diagram in

Figure 3. The ARA approach obtains the conditional probabilities pARAD (a | d) by solving

the decision tree using D’s (random) assessments for A’s inputs.

D A

S

−c

0

b− c

d

a0

a1

s0

s1

Figure 4: Decision tree representing A’s problem.

For example, D may believe that A is an expected utility maximiser. She would then

elicit her beliefs about A’s probabilities and utilities (random variables to her) and use

these to solve his problem from her perspective, which entails computing the (random)

action that maximises his random expected utility. Thus, D should model both A’s

preferences for the consequences in Figure 4 as well as his beliefs about the likelihood

of success.

Suppose D thinks A bases his decision on a cost-benefit analysis. In that case, the

consequences forA are described in Table 1. Moreover, D may use a multi-attribute value

model to decompose her assessment about A’s valuation of consequences into simpler

assessments regarding the costs and benefits associated with each of his consequences.

Later, she can aggregate these assessments as shown in the row Profit in Table 1 and

reflected in Figure 4.
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(Attack, Outcome) - (a, s)

(a0, s0) (a1, s0) (a1, s1)

Cost 0 c c

Benefit 0 0 b

Profit 0 −c b− c

Table 1: Cost-benefit analysis of A’s consequences.

Specifically, this requires D to assess two quantities: c and b, A’s cost of undertaking an

attack and his benefit if successful, respectively. We assume that 0 < c < b, implying

that an attack (a1) is a more costly action for A than not attacking (a0), but potentially

more beneficial; and that a successful attack (s1) is better for A than an unsuccessful one

(s0). Since D is generally uncertain about these quantities, she will provide probability

distributions to model her beliefs about them. Suppose her self-elicitations correspond

to the uniform distributions:

• A’s cost of an attack: c ∼ U (cmin, cmax) (uniform).

• A’s economic benefit from a successful attack: b ∼ U (bmin, bmax).

These allow D to compute the random values related to A’s consequences in Table 1.

We have assumed that D believes that A’s costs and benefits are uniformly distributed

and, quite importantly, independent. However, in many cases there is dependence; e.g. a

more costly attack is most likely correlated with larger gains for A. In that case, one

needs to model c and b jointly. For simplicity, this example assumes independence.

If D believes that A is risk neutral (i.e. seeking to maximise his expected profit), she

would now elicit her beliefs about A’s beliefs for his probability of success. Otherwise,

beforehand, she would have to model A’s risk preferences over the random consequences.

She could do that by eliciting a utility function over profits for him and model his risk

attitude as shown in Section 4.2 and exemplified in Section 5, where her uncertainty

about A’s risk attitude is captured through a probability distribution over the risk

aversion coefficient of a parametric utility function.

Alternatively, because there are just three possible outcomes for A (no attack, failed

attack, successful attack), D may directly assess her belief about his utility for each of

them. Without loss of generality, a utility of 0 and 1 can be respectively assigned to the

worst and best consequences for A. Since D believes that −c < 0 < b − c, uA(−c) = 0

and uA(b− c) = 1, even when she does not know the exact values of b and c. Thus, she
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only needs to elicit her distribution for uA(0) = u, knowing that 0 < u < 1, though being

uncertain of A’s exact value of u. Recall that this could be elicited as the probability

at which A is indifferent between getting profit 0 for sure and a lottery ticket in which

he wins b − c with probability u and looses c with probability 1 − u. So D could elicit

a distribution for the random variable UA that represents her full uncertainty over A’s

utility u.

D would also need to assess A’s beliefs about his chance of success, determined by

pA(s1 | d0, a1) = πd0 and pA(s1 | d1, a1) = πd1 . She should model her uncertainty about

these with random probabilities πd0 ∼ P d0
A and πd1 ∼ P d1

A , with πd1 < πd0 to ensure that

defending (d1) reduces the chance of a successful attack. Then for each of her actions

d ∈ {d0, d1}, D can compute A’s random expected utilities as

Ψ(d, a0) = u ∼ UA, Ψ(d, a1) = πd ∼ P d
A,

and the ARA probabilities of attack as

pARAD (a1 | d) = P(UA,P
d
A) (u < πd) . (1)

Once she has self-elicited her distributions for UA, P d0
A and P d1

A , she may compute the

attack probabilities as in (1), which represent D’s ARA probabilistic predictions of

how A will respond to each of her possible choices. For example, assuming that these

distributions are UA ∼ Be(1, 2) (beta) and P d0
A ∼ U(0.5, 1) and P d1

A ∼ U(0.1, 0.4), then

Monte Carlo (MC) approximation estimates the attack probabilities as p̂ARAD (a1 | d0) ≈
0.92 and p̂ARAD (a1 | d1) ≈ 0.43 (based on an MC sample size of 106). In this case, choosing

to defend (d1) acts as a deterrent for A to attack (a1).

We now address whether this ARA decomposition approach leads to better attack

probability estimates than those obtained by standard SEJ methods. Adopting a norma-

tive viewpoint, we show through simulation that under certain conditions the variance

of the ARA estimates are smaller than those of the SEJ estimates.

In our case, due to the assumptions behind expression (1), we have no reason to

believe that D finds one attack distribution more (or less) likely than another, except

that an attack is more likely when no defence is attempted. That is, pSEJd0
≥ pSEJd1

where

pSEJd0
= pSEJD (a1 | d0) and pSEJd1

= pSEJD (a1 | d1). Thus, as a high-entropy benchmark, we

assume that pSEJd0
and pSEJd1

are uniformly distributed over the set {0 ≤ pSEJd1
≤ pSEJd0

≤
1}, whose variance-covariance matrix is(

1
18

1
36

1
36

1
18

)
≈

(
5.56 2.78

2.78 5.56

)
· 10−2. (2)

As before, D’s assessment of the ARA attack probabilities involves eliciting distri-

butions (UA, P
d0
A , P

d1
A ). It is reasonable to assume that u is independent of πd0 and πd1 .
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Since the support of all three random variables is [0, 1], an equitable framework for the

benchmark may assume that UA ∼ U(0, 1) and (P d0
A , P

d1
A ) are uniformly distributed over

the set {0 ≤ πd1 ≤ πd0 ≤ 1}. We conducted 104 MC estimates of the attack proba-

bilities using these distributions, each based on an MC sample size of 104, leading to a

variance-covariance matrix for pARAd0
and pARAd1

of(
2.24 1.10

1.10 2.22

)
· 10−5. (3)

Thus, as a result of the decomposition approach inherent to the ARA methodology,

both variances and the covariance in the ARA approach (3) are significantly smaller

than those in the SEJ benchmark (2), providing a more precise assessment.

Typically, one would have more information about (UA, P
d0
A , P

d1
A ). For example,

suppose D believes that the mean values of the three random variables are E[UA] = 2
5
,

E[P d0
A ] = 2

3
and E[P d1

A ] = 1
3
. If she assumes they all are uniformly distributed with

maximum variance, then UA ∼ U(0, 4
5
), P d0

A ∼ U(1
3
, 1) and P d1

A ∼ U(0, 2
3
) (and πd1 ≤ πd0),

and the variance-covariance matrix for pARAd0
and pARAd1

is(
1.42 0.65

0.65 2.35

)
· 10−5.

Compared to (3), these assumptions reduce the variance for pARAd0
and the covariance,

although slightly increase the variance of pARAd1
.

Finally, if the random variables followed beta distributions with common variance
1
10

, then UA ∼ Be(0.56, 0.84), P d0
A ∼ Be(0.81, 0.41) and P d1

A ∼ Be(0.41, 0.81) (and πd1 ≤
πd0), and the variance-covariance matrix for pARAd0

and pARAd1
is(

1.52 0.64

0.64 2.25

)
· 10−5.

Again, the covariance matrix is significantly more precise than the SEJ benchmark.

For further comparison of the SEJ and ARA benchmarks, assume that the SEJ

elicitation process incorporates additional information, so that pSEJd0
and pSEJd1

are now

uniformly distributed over the set {ε ≤ pSEJd1
≤ pSEJd0

≤ 1 − ε} with 0 ≤ ε ≤ 1
2
. Then

the variance-covariance matrix for pSEJd0
and pSEJd1

is(
(1−2ε)2

18
(1−2ε)2

36

(1−2ε)2

36
(1−2ε)2

18

)
. (4)

From (3) and (4), we see that one must take ε > 0.49, a very precise assessment, in order

for the corresponding variance-covariance matrix of pSEJd0
and pSEJd1

to be less variable

than pARAd0
and pARAd1

.
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All these comparisons indicate that although the ARA approach requires more as-

sessments to obtain the relevant probabilities of the adversarial actions, ARA tends to

provide more precise ones. However, if the SEJ information is sufficiently specific, then

SEJ can outperform ARA in terms of reduced variance for the relevant random variables.

4 ARA Modelling Strategies

We have shown that the ARA decomposition can have advantages over the plain SEJ

approach. We now describe strategies to implement ARA through random probabilities

and utilities.

4.1 Random probabilities

We focus first on D’s assessments over A’s perspective of the different random events

involved in the decision making problem, that is, the random probabilities. To fix ideas,

assume we have a single chance node to model, say S, which depends on both D’s and

A’s choices. We designate D’s probability model for S by pD(s | d, a). Our task is to

develop a (random) model PA(s | d, a) that reflects D’s uncertainty about A’s prospect

of S. We distinguish three cases. In all of them, Bayesian updating could be used to

dynamically adjust the assessed prior distributions as data accumulates, thus attaining

subsequent random posterior distributions that better reflect D’s perspective over A’s

uncertainty, as shown in Section 4.1.1.

4.1.1 Probability of a single event

Suppose first that the chance node S just consists of a single event s which may (s = 1)

or not (s = 0) happen. Then pA(s | d, a) is completely determined by pA(s = 1 | d, a),

for each of the possible combinations of D’s and A’s decisions, as pA(s = 0 | d, a) =

1− pA(s = 1 | d, a).

One possibility would be to base PA(s = 1 | d, a) on an estimate πD of pA(s =

1 | d, a), with some uncertainty around it. This may be accomplished in several ways.

We could do it through a uniform distribution U(πD − µ, πD + µ) centred around πD

in which the parameter µ would also have to be assessed, e.g. in terms of the expected

variance ν of the distribution so that µ =
√

3ν. Another option would be to use a beta

distribution Be(α, β) in which πD may be regarded as the mean (or the median or mode)

of the distribution and we would have to assess the parameters α and β to shape the

distribution, e.g. based on a further assessment of the variance ν. This would lead, when

10



πD is the mean, to:

α =
πD
ν

(πD (1− πD)− ν) , β =
1− πD
ν

(πD (1− πD)− ν)

Note that when D thinks that A has information similar to hers, an adequate best guess

for πD could be based on her own assessment of pD(s = 1 | d, a).

If the possible occurrence of single event s were to be repeated over time, random

prior distributions could be reassessed by means of Bayesian updating. Consider, for

example, the second case in which a beta distribution Be(α, β) is used to approximate

PA(s = 1 | d, a). If event s has had y chances to happen and has only materialised z

times (and y − z has not), our new random posterior would be Be(α + z, β + y − z).

4.1.2 Probabilities of multiple events

We assume now that the chance node S includes N events {s1, . . . , sN}. In this case,

probabilities pA(s = s1 | d, a), . . . , pA(s = sN−1 | d, a) would determine pA(s | d, a) com-

pletely, for each pair of D’s and A’s decisions, as pA(s = sN | d, a) = 1 −
∑N−1

n=1 pA(s =

sn | d, a). Therefore, we only need to model PA(s = s1 | d, a), . . . , PA(s = sN−1 | d, a),

which we jointly designate PA(s | d, a).

In line with the previous case, we could base PA(s | d, a) on a best guess πD(s),

for example pD(s | d, a) when D believes that A has similar information, with some

uncertainty around it. We could use a parametric probability distribution, randomising

each of its parameters much as we have done in the preceding section. In this manner, for

each pair of decisions d and a, we could estimate πD,n of pA(s = sn | d, a) ∀n ∈ {1, . . . , N−
1} and then incorporate the uncertainty through a uniform U(πD,n − µn, πD,n + µn) or

beta distribution Be(αn, βn) centred around πD,n, making sure that their sum does not

exceed 1.

A more effective way would be modelling PA(s | d, a) as a Dirichlet distribution with

mean πD(s) and parameters assessed based on one further judgement concerning, e.g. the

variance of one of them. To do this, for each pair of decisions (d, a), we would obtain

from D an estimate πD,n of pA(s = sn | d, a) ∀n ∈ {1, . . . , N} and associate random

variables Sn such that E [Sn] = πD,n. Their joint distribution could then be described as

Dirichlet, (S1, . . . , SN) ∼ Dir(α), with parameters α = (α1, . . . , αN). If α̂ =
∑N

n=1 αn,

it follows that

E [Sn] =
αn
α̂
, V ar [Sn] =

αn(α̂− αn)

α̂2(α̂ + 1)
;

and it suffices to fix a value, e.g. V ar [S1], to calculate the required αn parameters.
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4.1.3 The continuous case

We consider now the case in which the chance node S involves a continuous set of events.

Trying to determine a random probability for each realisation s is no longer possible, so

we need to model a distribution over the various probability distributions that A might

entertain.

Techniques are similar to those described to assess the probabilities of multiple events.

We could base PA(s | d, a) on a guess πD(s), say pD(s | d, a), with some uncertainty

around it. For example, this may be achieved by means of a Dirichlet process, with base

distribution πD(s) and concentration parameter ρ as perceived by D, which allows to

sample approximate distributions of PA(s | d, a). Other non-parametric approaches such

as hidden Markov models or hierarchical Pitman-Yor processes (Teh and Jordan, 2010)

could be used with reference to the above guess.

4.2 Random utilities

We draw now attention over D’s perspective on A’s preference assessments concerning

the consequences of the decision making problem, that is, the random utilities. We

shall usually have some information about A’s multiple interests, e.g. when dealing with

terrorism problems, Keeney (2007) and Keeney and von Winterfeldt (2010) present ex-

tensive classifications of criteria amongst which to choose. Keeney (2007) then advocates

that standard utility methods may be adopted by interviewing experts in the problem

at hand, therefore developing utility functions modelling A’s preferences. However, note

that such preferences are not directly elicited from A, but rather through a surrogate.

Thus, intrinsically, there is uncertainty about A’s preferences.

An alternative approach, illustrated in Banks et al. (2015), is to aggregate the ob-

jectives with a weighted measurable value function, as in Dyer and Sarin (1979). As

an example, we could consider an additive value function for A in which his objec-

tives v1, . . . , vR may be aggregated using weights w1, . . . , wR ≥ 0,
∑R

r=1 wr = 1 as

vA =
∑R

r=1wr vr. The uncertainty about the weights could be modelled using a Dirich-

let distribution, just as in Section 4.1.2, so that we may estimate their value and then

associate random variables Wr such that E [Wr] = wr, their joint distribution being

Dirichlet, (W1, . . . ,WR) ∼ Dir(α), with parameters α = (α1, . . . , αR) with one further

judgement, e.g. fixing one of the parameter’s variance. Finally, using the relative risk

aversion concept (Dyer and Sarin, 1982), we could assume different risk attitudes when

modelling A’s utility function. Continuing the example and assuming an exponential

utility function, we may transform the (random) value function VA =
∑R

r=1Wr vr into

one of the three following utilities depending on A’s risk attitude:
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• Risk aversion. UA = 1− exp(−λVA + c), λ > 0.

• Risk neutrality. UA = VA + c.

• Risk proneness. UA = exp(λVA + c), λ > 0.

Further uncertainty about the risk coefficient λ and the adjusting constant c may be

modelled e.g. through uniform distributions Λ ∼ U(λ1, λ2) and C ∼ U(c1, c2). In any

case, to determine all the required distributions, we may ask experts to directly elab-

orate such distributions or request them to provide point estimates of the weights and

coefficients and build the distributions from these.

An alternative approach for building a distribution over A’s preferences is described

in Wang and Bier (2013). As before, we suppose that they are represented through a

multi-attribute utility function, which may involve the above attributes v1, . . . , vR as

well as an unobserved one v0. For simplicity, consider A’s utility to be linear in each of

the attributes which are additively independent. Then we ask several experts to pro-

vide rank orders of A’s action valuations and derive probability distributions that can

match those orderings to obtain the (random) weights (W0,W1, . . . ,WR) for his utility

function. To do this, we consider as input such rankings and as output a distribution

over A’s preferences (expected utilities) for which two methods are suggested. One is an

adaptation of probabilistic inversion (Neslo et al., 2008); essentially, it identifies a prob-

ability distribution Q over the space of all possible attribute weights (W0,W1, . . . ,WR)

that can match the empirical distribution matrix of expert rankings with minimum

Kullback-Leibler divergence to a predetermined (e.g. non-informative, Dirichlet) start-

ing probability measure Q0. The other one uses Bayesian density estimation (Müller et

al., 2015) based on a prior distribution Qp (e.g. chosen in accordance to a Dirichlet pro-

cess with base distribution Q0) over the space of attribute weights (W0,W1, . . . ,WR) and

treating the expert rankings as observations to update that prior leading to a posterior

distribution Q, obtained through a Gibbs sampling scheme.

5 A Numerical Example

As an illustration, we consider a sequential defend-attack cybersecurity problem. A user

(D, defender) needs to make a connection to a site, either through a safe, but costly,

route (d0) or through a cheaper, but more dangerous protocol. In the latter case, she may

use a security key, rendering the protocol less dangerous. While using the dangerous

protocol, whether unprotected (d1) or protected by a security key (d2), the defender

may be the target of a cybercriminal who may decide to attack (a1) or not (a0). Table
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2 (respectively, Table 3) display the defender’s (respectively, attacker’s) consequences,

expressed as costs, for the various defend and attack possibilities.

Attack

a0 a1

Defence

d0 h —

d1 0 c θ1

d2 k k + c θ2

Table 2: Defender’s loss function.

Attack

a0 a1

Defence

d0 0 —

d1 0 L−Gθ1

d2 0 L−Gθ2

Table 3: Attacker’s loss function.

The following parameters are used: (i) h is the cost of using the expensive protocol;

(ii) θ1 is the fraction of assets lost by the defender when attacked and unprotected;

(iii) θ2 is the fraction of assets lost by the defender when attacked but protected; (iv) k

is the security key’s cost; (v) c is the defender’s scaling cost relative to the fraction

of assets lost; (vi) L is the uncertain cost of an attack; and (vii) G is the uncertain

cybercriminal’s scaling gain relative to the fraction of assets lost by the defender. The

global problem may be viewed through the game tree in Figure 5.

D A

A

θ1

θ2

(c θ1, L−Gθ1)

(0, 0)

(h, 0)

(k, 0)

(k + c θ2, L−Gθ2)

d0

d1

d
2

a0

a1

a0

a1

Figure 5: Game tree for the cybersecurity routing problem (losses).

The defender believes that the asset fractions θi follow distributions pD(θi | di, a1) with

θi ∼ Be(αDi , βDi ), i = 1, 2. She is risk averse and her utility function is strategically

equivalent to 1 − eλD x, where x is her cost and λD > 0 her risk aversion coefficient.
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The attacker has different beliefs about θi, pA(θi | di, a1), with θi ∼ Be(αAi , βAi ), i = 1, 2;

the defender’s uncertainty about αAi and βAi inducing its randomness. He is risk prone

and his utility function is strategically equivalent to e−ΛA x − 1, where x is his cost and

ΛA > 0 his uncertain risk proneness coefficient. Both agents expect θ1 to be greater

than θ2, but not necessarily. This may be reflected in the choice of the beta parameters,

for example with E [θ1] =
αD
1

αD
1 +βD

1
>

αD
2

αD
2 +βD

2
= E [θ2], in the case of the defender. Table 4

(respectively, Table 5) provides the defender’s (respectively, attacker’s random) expected

utilities uD (respectively, UA) under the various interaction scenarios.

Attack

a0 a1

Defence

d0 1− eλD h —

d1 0 1−
∫
eλD c θ1 pD(θ1) dθ1

d2 1− eλD k 1−
∫
eλD(k+c θ2) pD(θ2) dθ2

Table 4: Defender’s expected utility.

Attack

a0 a1

Defence

d0 0 —

d1 0
∫
eΛA(Gθ1−L) PA(θ1) dθ1−1

d2 0
∫
eΛA(Gθ2−L) PA(θ2) dθ2−1

Table 5: Attacker’s random expected utility.

Suppose we assess from the defender: (i) a cost of h = 150, 000 e for implementing the

expensive protocol; (ii) a security key’s cost of k = 50, 000 e to be protected when using

the dangerous protocol; (iii) a scaling cost of c = 200, 000 e relative to the fraction

of assets lost; (iv) a risk aversion coefficient of λD = 3 · 10−5; (v) the distribution

θ1 ∼ Be(αD1 , βD1 ) with a expected fraction (mean) of 0.6 of the assets lost and standard

deviation 0.15 when attacked and unprotected, leading to αD1 = 0.36 and βD1 = 0.24; and

(vi) the distribution θ2 ∼ Be(αD2 , βD2 ) with a expected fraction (mean) of 0.3 of the assets

lost and standard deviation 0.07 when attacked but protected, leading to αD2 = 0.6 and
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βD2 = 1.4. These are standard decision analytic assessments and the resulting problem

faced by her is described in the decision tree in Figure 6.

D A

A

θ1

θ2

−162.32

0.00

−89.02

−3.48

−111.50

d0

d1

d
2

a0

a1

a0

a1

Figure 6: Decision tree representing the defender’s problem (expected utilities).

The expected utility of the first alternative (d0, use the expensive protocol) may be

directly estimated as

ψD(d0) = 1− eλD h ≈ −89.02,

given the fact that there is no chance of attack in this scenario. However, those of the

other two alternatives have the form

ψD(di) =
1∑
j=0

pD(aj | di)uD(di, aj), i = 1, 2;

where uD(di, aj) may be obtained from Table 4 with the specific values indicated in

Figure 6. Thus, we need to assess the attack probabilities pD(a1 | di) (and pD(a0 | di) =

1− pD(a1 | di)) given the implemented defence di.

Suppose that, in line with Section 4, we assess that: (i) the uncertain cost of an

attack is L ∼ U(104, 2 · 104) with an expected cost of 15, 000 e; (ii) the uncertain

cybercriminals scaling gain relative to the fraction of assets lost by the defender is

G ∼ U(104, 5 · 104) with an expected scaling gain of 30, 000 e; (iii) his risk proneness

coefficient is ΛA ∼ U(10−4, 2 ·10−4) with an expectation of 1.5 ·10−4; (iv) the distribution

θ1 ∼ Be(αA1 , βA1 ) has a expected fraction (mean) of 0.6 assets lost when the defender is

attacked but protected, with αA1 ∼ U(5, 7) and βA1 ∼ U(3, 5); and (v) the distribution

θ2 ∼ Be(αA2 , βA2 ) has a expected fraction (mean) of 0.3 assets lost when the defender

is attacked but protected, with αA2 ∼ U(2, 4) and βA2 ∼ U(6, 8). We may then use
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Algorithm 1 to estimate the required probabilities p̂D(a1 | d), where Ψn
A(di, a) designates

the expected utility that the cybercriminal reaches when the defender implements d, he

chooses action a and the sampled parameters are ln, gn, λnA, α
A,n
i , βA,ni .

Algorithm 1 Numerical example: Simulation of p̂D(a1 |d)

Data: Number of iterations N .

1: Set p1, p2 = 0.

2: For n = 1 to N do

3: Draw ln from U(104, 2 · 104) and gn from U(104, 5 · 104).

4: Draw λnA from U(10−4, 2 · 10−4).

5: Draw αA,n1 from U(2, 7) and βA,n1 from U(1, 5).

6: Draw αA,n2 from U(0, 3) and βA,n2 from U(1, 6).

7: For i = 1 to 2 do

8: Ψn
A(di, a0) = 0.

9: Ψn
A(di, a1) =

∫
eλ

n
A(gn θi−ln) θ

αA,n
i −1

i (1− θi)β
A,n
i −1

Beta(αA,ni , βA,ni )
dθi − 1.

10: If Ψn
A(di, a1) ≥ Ψn

A(di, a0) then

11: pi = pi + 1.

12: End If

13: End For

14: End For

15: For i = 1 to 2 do

16: p̂(a1 | di) = pi/N .

17: End For

In our case, with N = 106, we obtain p̂(a1 | d1) = 0.66 (and, consequently, p̂(a0 | d1) =

0.34). Similarly, p̂(a1 | d2) = 0.23 (and p̂(a0 | d2) = 0.77). Then, we have ψD(d0) =

−89.02, ψD(d1) = −107.13 and ψD(d2) = −28.32 being the optimal cyberdefense d∗ARA =

d2, that is using the dangerous protocol protected by the security key.

6 Discussion

Adversarial Risk Analysis is an emergent paradigm when supporting a decision maker

who faces adversaries and such that the consequences are random and depend on the

actions of all participating agents. We have illustrated the relevance of such approach

as a decomposition technique to forecast adversarial actions in game theoretic contexts,

which could be added to the SEJ toolkit. We have also presented key implementation
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strategies. We have limited the analysis to the simpler sequential case, but ideas extend

to simultaneous problems, albeit with technical difficulties, due to the belief recursions

typical of level-k thinking.

Throughout the examples expert judgement has been assessed assuming just one

single expert. However, in practice, several experts might be available and aggregation

techniques such as Cooke’s classical method (Cooke, 1991) would be needed. Diverse

adversarial rationalities, such as non-strategic or prospect-maximising players, could be

handled by means of mixtures.

We have seen how the ARA decomposition strategy breaks down an attack probabil-

ity assessment into multi-attribute utility and probability assessments for the adversary.

For the ARA approach to be worthwhile, it is expected that the resulting probabili-

ties are more accurate than the ones that would have been directly obtained and, also,

that the corresponding increased number of necessary judgements are cognitively easier.

Experiments should be conducted to validate these ideas.

Last, we have shown that ARA might improve the results of direct SEJ. As this is

not always the case, we would study the combination of both techniques to provide a

broader view on the prescriptive optimal decisions.
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7 An Experiment

We have seen how the ARA decomposition strategy breaks down an attack probability

assessment into multi-attribute utility and probability assessments for A. This strategy

increases the number of judgements necessary to determine attack probabilities, al-

though these might be simpler. For the ARA approach to be worthwhile, it is expected

that the resulting probabilities are more accurate than the ones that would have been

directly obtained. Also, for the ARA approach to be practical it is expected that the

corresponding assessments will be cognitively easier so that all the necessary inputs can

be obtained to compute the ARA attack probabilities. We describe here an experiment

performed to validate these ideas.

The essence of the experiment. We have a group of participants. We randomly split

them into two groups: I and II. Each group makes a few assessments, say five. Both

groups have to assess the same probabilities in an adversarial situation.

• Group I receives just the event to be assessed.

• Group II receives the event but also the decomposition and they are asked to assess

the random probabilities and utilities.
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Annex 9: Skeleton and examples of new R 

routines 

Basic schema of the R script 

The script  

1. Configures the R environment that runs the simulation (e.g., check if required libraries are in 

the system) 

2. Reads the input from the CYBECO Toolbox: 

1. Front-end input with the parameters selected by the end user. 

2. Back-end input with parameters defined by the admin user. 

3. Checks whether the input is valid and loads it to the R environment. 

4.  Runs the simulations. 

1. Simulates the hacktivists and cybercriminals problems to forecast their attacks. For each 

agent: 

1. Definition of decisions and portfolios of decisions. 

2. Configuration of simulation (needs the decision portfolios). 

3. Load the functions for each node, which has its own script containing its functions 

(some nodes have the same functions in both the attacker and defender problems, 

other nodes might have different functions). 

4. Problem-solving through simulation and optimization. Implementation of the  

algorithm for the attacker (see annex 1). 

2.  Simulates the defender problem to find optimal portfolio. 

1. Definition of decisions and portfolios of decisions. 

2. Configuration of simulation (needs the decision portfolios). 

3. Load the functions for each node, which has its own script containing its functions 

(some nodes have the same functions in both the attacker and defender problems, 

other nodes might have different functions). 

4. Problem-solving through optimization. Implementation of the algorithm for the 

defender (see annex 1). 

5.  Generates the results of the analysis. 

6.  Writes the output for the CYBECO Toolbox. 
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Files of the algorithm 

 toolbox_model.R – R script that executes the algorithm. 

 \input – Folder with input files. 

◦ frontend_input.R – input from CYBECO Toolbox user interface. 

◦ backend_input.R – input from CYBECO Toolbox admin user. 

 \output – Folder with output files 

◦ results_csv.R – output for CYBECO Toolbox user interface. 

 \config – Configuration files of algorithm (eg, check libraries or valid input). 

 \analysis – Folder with script containing the model. 

◦ \constraints – Folder with script modelling the constraints (e.g., budget). 

◦ \nodes – Folder with script modelling the different nodes of the model (e.g., 

environmental threats). 

◦ \problems – Folder with script defining the problems for the different agents involved 

(e.g., defender, hacktivists). 

◦ \simulations – Folder with script modelling the heuristics and iterations to run the 

simulation. 

◦ \summaries – Folder with script that generates the results of the analysis. 
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Example scripts 
Environmental threat 

#! Rscript N03_envthreats.R -- 
 

#### ENVIRONMENTAL THREAT: FIRE ---- 
envThreatFire <- function () { 
  if (envthreat_fire_included == FALSE) {0} 
  else if (envthreat_fire_included == TRUE) { 
    min(1,rpois(1,.022)) 
  } else {cat("Error in N03_envthreats.R")} 
} 
 

d_envThreatFire <- function () { 
  if (envthreat_fire_included == FALSE) {0} 
  else if (envthreat_fire_included == TRUE) { 
    .022 
  } else {cat("Error in N03_envthreats.R")} 
} 

Defender utility 

#! Rscript N15H_defender_utility.R -- 
 

#### DEFENDER UTILITY ---- 
 

# Function that models the defender utility 
defenderUtility <- function(defender_mon_results, 
                            iimp_pii_records_exposed) { 
 monetary_result <- feature_turnover_money-defender_mon_results 
 defender_utility <- 1-utility_defender_coef_exp*(1-exp(utility_defender_rho*(monetary_result + 

pii_personal_value*iimp_pii_records_exposed))) 
 defender_utility 
} 

 

Hacktivist problem 

#! Rscript hacktivists.R -- 
 

####  CONFIGURES THE DECISION-MAKING ---- 
 

#  generates the hacktivists decisions 
 

ifelse(tarthreat_dataexf_included == TRUE, 
                                N06H1_targexf_options <-c(1,0), 
                                N06H1_targexf_options <-c(0)) 
 

ifelse(tarthreat_dataman_included == TRUE, 
                                N06H1_targman_options <-c(1,0), 
                                N06H1_targman_options <-c(0)) 
 

ifelse(tarthreat_dos_included == TRUE, 
                                N06H1_targdos_options <- c(1,0), 
                                N06H1_targdos_options <-  c(0)) 
 

 

#  generates the decision portfolio of the hacktivists, 
# which is a table with all the possible combinations of decisions 
H_decision_portfolios <- expand.grid(H_targexf_decision = N06H1_targexf_options, 
                                   H_targman_decision = N06H1_targman_options, 
                                   H_targdos_decision = N06H1_targdos_options) 
 

####  CONFIGURES THE SIMULATION OF THE HACKTIVISTS PROBLEM ---- 
 

#  defines the number of simulations per decision portfolio 
H_portfolio_simsize <- input_portfolio_simsize*5 
 

# s defines the number of portfolios 
H_portfolios_numberof <- portfolioSize(H_decision_portfolios) 
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#  assigns a numeration to each of the individual simulations 
H_portfolio_num <- portfolioNumeration(H_portfolios_numberof) 
 

#  generates a table with the individual simulations 
# and their corresponding decision portfolio 
H_portfolios_table <- portfolioTable(H_portfolio_num, 
                                   H_decision_portfolios) 
 

####  LOADS THE FUNCTIONS OF EACH NODE ---- 
 

source("analysis/nodes/hacktivists/N02H_security_portfolio_options.R", echo = echoing) 
source("analysis/nodes/hacktivists/N06H2_targatt_hacktivists_results.R", echo = echoing) 
source("analysis/nodes/hacktivists/N09H_impacts.R", echo = echoing) 
source("analysis/nodes/hacktivists/N11H_hacktivists_detection.R", echo = echoing) 
source("analysis/nodes/hacktivists/N15H_hacktivists_utility.R", echo = echoing) 
 

####  SOLVES THE HACKTIVISTS PROBLEM THROUGH SIMULATION ---- 
 

# Simulation: 
# For each security control observed, 
# we perform an individual simulation [hacktivists_simulation.R script]  
# to obtain the optimal decision portfolio of the hacktivists 
# in that individual simulation [which.max(...)], i.e., 
# the one that maximises expected utility. 
# We repeat this process a number of times 
# based on the size of the simulation defined by the user [H_security_portfolio_simsize]. 
# The H_fullsim_table stores all the simulated data. 
# The H_optimal_portfolio_sim table contains 
# the optimal portfolio in each individual simulation. 
#H_fullsim_table <- NULL 
H_optimal_portfolio_sim <- NULL 
jj <- 0 
for (j in H_security_portfolio_options) { 
  H_security_portfolio_obs  <- j 
  jj <- jj+1 
  for (i in 1:H_portfolio_simsize) { 
    cat('\r',floor(100*(jj-1+i/H_portfolio_simsize)/(length(H_security_portfolio_options))), "% of 

hacktivists problem completed ...") 
    source("analysis/simulations/hacktivists_simulation.R", echo = echoing) 
#    H_fullsim_table <- dplyr::bind_rows(H_fullsim_table, H_portfolio_simulation) 
    H_optimal_portfolio_sim <-  
      dplyr::bind_rows(H_optimal_portfolio_sim, 
                       dplyr::slice(H_portfolio_simulation, 
                                    which.max(H_portfolio_simulation$hacktivists_utility))) 
  } 
} 
 

# The warning messages are not relevant, 
# they reffer to automatic changes in formating made by R. 
# Solution: 
# From the simulated data [H_optimal_portfolio_sim], 
# we generate the distribution [H_random_optimal_portfolio] 
# of hacktivists decisions [H_targef_decision, H_targman_decision, ...], 
# given the security control observation [H_security_portfolio_obs]. 
H_random_optimal_portfolio <- NULL 
for (j in H_security_portfolio_options) { 
  H_random_optimal_portfolio <-  
    dplyr::bind_rows(H_random_optimal_portfolio, 
                     data.frame(H_security_portfolio_obs = j, 
                                H_random_optimal_targexf_attack =  
                                  mean(dplyr::filter(H_optimal_portfolio_sim, 
                                                           H_security_portfolio_obs == j 

)$H_targexf_decision), 
                                H_random_optimal_targman_attack =  
                                  mean(dplyr::filter(H_optimal_portfolio_sim, 
                                                           H_security_portfolio_obs == j 

)$H_targman_decision), 
                                H_random_optimal_targdos_attack =  
                                  mean(dplyr::filter(H_optimal_portfolio_sim, 
                                                           H_security_portfolio_obs == j 

)$H_targdos_decision) 
                                )) 
} 
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Annex 10  

Recommendations from focus groups, advisory board and reviewers 

 

This annex contains the recommendations from the focus groups, the advisory board and the 

reviewers. These comments motivate the proposed improvements summarised in Section 2 

of the document. 

Recommendations from focus groups 

We only include here the recommendations to be addressed in the modelling part, leaving 

aside the interface aspects dealt with in such groups or in the experiments. The core 

information comes from the experts in AXA Group Security.  

 

Global comments: 

1. There is a conflict between “adversarial risk” mentioned several times in the text of 

the pages and considering “non-intentional” threats, such as the way Fire or 

Computer Virus are described. From an information security perspective, this is 

wrong. 

This was mainly due to our wording. An effort has been made in this phase to conform to 

the ISF terminology which covers intentional and non-intentional threats. Adversarial risk 

takes care of the intentional part, whereas standard risk analysis takes care of the non-

adversarial part.  

2. At the moment, the way it works feels like Each Threat/Risk has a single control 

mapped against it, which won’t ever be the case; Many controls can support many 

risks and as such there would need to be a weighting behind one. For example, a 

Virus threat would be reduced by 

a. Patching 

b. HIPS/HIDS 

c. Firewall 

d. Anti-Malware 

e. Etc. 

The underlying model is generic and of course may be used for the case in which there are 

several controls for a threat and controls for several threats.  The same with the tool. 

3. There’s huge gaps here in security controls even taking into account basic control 

recommendations like UK Cyber Hygiene, Australian Signals Directorate, CIS Top 20, 

etc. 

This was just an initial example. The model is generic and can accommodate the catalogues 

as wished. The new version is extended. 

4. The number of security controls is extremely reduced and doesn’t include several 

ones that would impact the security posture of the organisation used as an example 

Same comment as before, to mitigate we shall include an Other measures option. 

5. It’s unclear how the profile of the organisation (document management company) 

affects the tool and the results. If the profile of the organization is to imply that 

some security controls are implemented, then it should say so. Otherwise, this risk 

analysis is only partial and most likely to be inaccurate. 



   

 

Again this was an initial example. The method can accommodate the full case. In the 

example is just reflected in the size of the company, the budget available,…. An updated 

model will include generic features affecting various elements in the model. 

6. Its mixing up availability and confidentiality/integrity by having the physical fire 

stuff; Would it be better to have that separate? 

The supporting paper separates availability, etc. We have actually separated the impacts 

over various assets distinguishing between insurable and non insurable impacts. We have 

worked to improve the distinction taking into account the new preference model. There is 

a trend on combining physical and logical security and safety issues. 

1. Assets 

- Are these the only Assets you consider? With the description given of the SME, I’m 

expecting the organization to list its most important assets, which should include, 

as document management company, the documents it’s managing. 

- What about information assets? 

As we said this is an initial example, which needs to be completed. This has been 

complemented and we also added the Other * option when required. 

2. Threats 

- Are these the only threat considered? A document management company must be 

concerned about insider threat, data leakage, ransomware and many other 

threats. 

This is an initial conceptual example. We have completed methodologically as requested. 

- I don’t get the fact that you (the SME) can uncheck threats. If this is the case, 

then it kind of breaks the point I think. Unless the Uncheck is meant that I don’t 

want insurance in that area. A complete risk analysis needs to consider all the 

threats. 

In some instances, it could be the case that the risk analysts do not consider relevant a 

certain threat. For example, a nation state may be relevant for a reduced set of 

organisations, even SMEs, of certain characteristics or from some countries. Implicitly this 

means that the insurance won’t cover against such threat. This requires some kind of 

parametrization of insurance products. 

- You write ‘CYBECO looks at adversaries in the cybersecurity context’, yet the 

threat of Fire excludes ‘sabotage’ and Computer virus is ‘non-intentional’. Then, 

they are not ‘adversarial’ threats, so I don’t really understand. 

Not only adversaries. Some threats may be intentional, some not.  We could view a fire as 

intentional if performed by an adversary, as well as an intentional computer virus. But is 

not the case in the example. Care has been taken as far as wording is concerned. 

3. Threat / Fire 

- Makes sense and allows flexibility, however what about Earthquakes, Floods, 

why just fires? 

This is an example and not full. The system is open to extensions. 

- The home page mentions that CYBECO looks at adversaries in the cybersecurity 

context. But the popup on Threats/Fire says “We assume that a fire can occur 

only by accident, not considering the possibility of sabotage”. So why is it 

considered at all? 

We consider both adversarial and non adversarial threats. Wording has been improved 



   

 

4. Threat / Computer Virus 

- You consider computer virus among the threat but do not include anti-virus in the 

security controls. Is this because some security controls are expected to be 

implemented and not documented here? 

We include the firewall and risk mitigation procedures as examples. As we said this is not 

the final system just a demo prototype version. But it could be the case that some controls 

are already implemented and this needs to be contemplated. We have improved definition 

and implementation of controls. 

- I would change this to Malware Infection, better language. 

The whole vocabulary has been updated. 

- The Information popup is pretty bad as it talks about unintentional. Most virus 

outbreaks are malicious with malicious intent. Yes, employees are probably doing 

this accidentally but the wording describing this is pretty bad. 

To be modified. However, most virus are not targeted (although intentional). Language 

adapted to ISF. 

- What difference does “non-intentional” make? As a document management 

organization, I’d be more concerned by intentional virus attacks, trying to 

compromise the availability or integrity of my customers’ documents rather than 

the non-intentional ones that an antivirus will pick up. 

This is a simplified example. In such case, you would include targeted virus within the 

intentional attacks. The model has been enriched to take account of this. Antiviruses are 

not as excellent as you seem to imply. 

- If it’s “non-intentional”, then it’s “accidental risk” and not “adversarial risk”, so, 

hence the introduction to the site, why is it considered?  

The wording has been modified. 

- Cost of repairing an infected computer, this at least needs to be split into 

Workstations and Servers as the cost for either will be very different 

Indeed. But this is a simplified example!!!! We would differentiate in assets (right now just 

computer equipment, better workstations and servers). The asset definition has been 

improved. 

- Furthermore, assuming no controls, then most attacks would impact all the 

computers unless you’ve got good network segmentation (i.e., other security 

controls). It’s a generalisation but it would be a good way to simplify it and 

protect the insurance company from losing money. E.g. assuming worse case. 

Same comment. 

5. Threat / Competitor Attack 

- This is really weird, because none of the others imply a threat actor but this one 

does. 

Because this is targeted. Wording has been improved. 

- I doubt that most competitors in this space attack each other. The most likely 

threats are DDOS where the SME would be impacting by being on the same 

network or a blackmail type attempt to illicit money. 



   

 

Again this is based in the paper where everything is explained. On the other hand many 

attacks come from competitors… Again the list of targeted attacks is simplified. We have 

enriched the targeted and non targeted panels. 

6. Security controls 

- Are these the only security controls you are considering? What about antivirus and 

data leakage prevention that are quite expected in an organization that manages 

documents. 

Same comment as above. This is a simplified demo system. We have enriched the list this 

year. 

- There’s huge gaps here in security controls even taking into account basic control 

recommendations like UK Cyber Hygiene, Australian Signals Directorate, CIS Top 

20, etc. 

Same comment and action undertaken. 

- Also, it doesn’t talk about operational and maintenance costs just the cost of a 

Network Firewall. There would be ongoing maintenance and operational costs to 

manage it (Depending on the size of company) This might be intentional as it’s 

just a model but it’s too basic to figure out if the model is correct. 

Such costs would be sunk within the full costs. This is a yearly planning example. We have 

separated between both types of costs. 

7. Firewall – Because its next to anti-fire my mind immediately jumps to a physical 

firewall in a building. Consider Network Firewall. 

The whole concepts has been revised and reworded when necessary. 

8. I’m not sure I understand why Traditional insurance is mentioned here. The tool is 

about cyber insurance against adversarial threat. If the traditional insurance is to 

mitigate the threat of fire, sure, but fire is not considered an adversarial threat, so 

what does it do here in the first place? 

More and more, there is a movement towards combining physical and cyber security. 

Standards like ISO , ISF etc… combine both types of threats. The main split is between 

targeted and non targeted. Someone could buy ‘standard’ insurance but no cyber or vice 

versa. Wording has been carefully revised. 

9. The introduction of the page for the risk analysis from an insurance company 

perspective refers to a paper titled An Adversarial Risk Analysis Framework for 

Cybersecurity. Yet, the form below considers the risk of Fire that is considered non-

intentional, i.e., non-adversarial.1 

We have improved and simplified the wording. 

10. The different prices for cyber insurance is surprising. The price should vary depending 

on the number of security control selected (except anti-fire), and the combination 

of a Firewall *and* DDoS protection is more effective than either of them individually 

at protecting the organization against cyber threat, so the price should be further 

reduced. 

                                            

 

1 Note: the paper was not made available to the participants.. 

 



   

 

We have revised thoroughly the model assumptions and revised computations. 

11. The tool doesn’t say if the “risk mitigation procedures” are expected when either 

the firewall or DDoS protection are implemented. From a security point of view, it 

makes a significant difference, as it reflects a difference of maturity. Was the 

firewall and/or DDoS protection installed as a result of a “risk mitigation procedure” 

or in an ad-hoc way? 

The “risk mitigation procedures” refers to the adoption of secure practices and procedures 

by the workers when they are using their computers. Actually this could be one of the UK 

Cyber essentials. In the example case of the model, they can be the sole security measure 

implemented but they can also be implemented in conjunction with the firewall and the 

DDoS protection. The wording has been revised. 

The following comments were made on the output of the risk analysis. 

1.  “Risk analysis of impact” is odd. I would rather call it “impact analysis”. 

Impact analysis is other type of analysis but we can change the text. There is somehow a 

debate on terminology but we have made an effort to adapt terminology to ISO 27005. 

2. From a security standpoint, you are listing all the possible combination – that fit in 

the budget. But have you checked that you can get a cyber insurance without the 

most basic controls such as a firewall? Without these basic security controls, if cyber 

insurance was available, the price difference would not be just 20% or so. 

 

The model covers this type of constraints. The included example is a simple version. The 

cyberinsurance product defined is very simple. We allow for more constraints and more 

realistic cyberinsurance products. 

3. The number of expected DDoS attempts seems to be related to the type of Cloud-

Based DDoS protection (1tbps: 0; 10gbps: 22; 5gpbs: 27; 2gpbs: 28; no: 28). What 

are those numbers based on? 

In the example case, the attacker can test the site to know the DDoS protection 

implemented and thus adapt the number of attack attempts. Basically the stronger the 

protection, the less attack attempts that you shall suffer. 0, 22, 27, 28 etc… comes from 

the underlying model. We revise text and explanations. 

4. Besides, the number of “attempts” cannot be related to the type of protection you 

have. The number of successful attacks or disruptions are, not the number of 

attempts. 

It actually can as the attacker may observe some of the implemented defences, through 

tools like network scanners. We have revised text and improved explanation. 

5. Are you assuming that the selection of the anti-fire system reduces the impact on 

the facility of €0? What type of anti-fire are we talking about?  

We don’t see where this comment comes from. There is always a possibility of fire and, as 

a consequence, an expected impact on the facility in all the results. Anti-fire detects a fire 

so that it can be mitigated earlier and thus fewer contents are affected, therefore reducing 

the damage. We have revised thoroughly the database. 

 

6. Once again, I don’t understand the connection with the impact on the facilities. It’s 

a cyber risk and cyber insurance. What does fire, impact on facilities and traditional 

insurance have to do with this scenario. 



   

 

As mentioned, we are providing an integrated security-cybersecurity approach. We have a 

global budget for security which needs to be invested for standard and cyber threats, for 

targeted and non-targeted threats. The wording has been improved. 

7. I have a hard time understanding how the risk analysis is performed. It seems that 

for every line the variables (e.g., number of viruses, likelihood of fire, DDoS 

attempts) are changing. How can you compare the effectiveness and relevance of a 

controls if each lines are based on a different situation? 

8. To take an example, I got two lines that only differ by their insurance – 1: 

comprehensive and 2: Traditional. Yet, the Probability of Fire changes from 1: 1.5% 

to 2: 2.58%; the expected number of Virus infections from 1: 5.39 to 2: 5.43. Why are 

these probabilities are changing? It makes the comparison between comprehensive 

and traditional insurance impossible. The probability of fire is not affected by 

whether or not you have an insurance or a cyber insurance and the expected number 

of virus cannot be affected by whether or not you have a cyber insurance. 

Or, the wording is completely wrong. 

The calculations are based on MC simulation. For the prototype we performed a small 

simulation but big enough for calculating valid results for evaluating the different 

portfolios. A final version of this model would provide results based on a more strong 

simulation (having therefore less variation). We have also worked on improving the involved 

algorithms. We have revised text and improved the underlying algorithms. 

The following comments were specific to the Risk Analysis for an SME (Simulation) 

1. The price selection for the available insurance is ambiguous. 

a. Why is there a specific price for the traditional insurance with firewall or DDoS 

protection? 

b. Are the benefits cumulative? Does the cost with procedure expect all the 

above (i.e., anti-fire and firewall or DDoS)? 

Indeed, this needs to be corrected. It’s correct in the model/paper: 

DDoS protection: why the only variable considered is the attack capability in gbps? What 

about the probability of being attacked? Is it a probability of 1?  

The probability of attack is not one, but we have not included in the output. We shall 

include it. We also include other variables such as costs and gains for attacker, detection 

probability. We shall explore other technical relevant variables. We have also revised text. 

Recommendations from advisory board 

As reflected in D2.5, the advisory board members reflected the following needs in relation 

with the developments in WP·: 

 Further reflect about threats coming from insiders. 

We have devoted a paper to the problem of cyber insiders available as Annex 3*. 

 There should be some kind of segmentation of attackers, as well as their objectives, 

much as you have done for the Defenders. 

We have developed several templates for various types of attackers (specifically, hacktivists 

and cybercriminals) and described the computational strategies when there are several 

attackers. Described in detail in Annex 8. We have also sketched the preference models for 

attackers. 

 The need to consider in further detail third party liabilities. 



   

 

We have thoroughly updated our Defender model document, available as Annex 2 and 

worked in the related issue of supply chain cyber risk, as reflected in the Annexes 4 and 5. 

 Translate the usual A, I, C criteria more into business related attributes. 

We have reflected and discuss this in detail in Annex 2. 

 The objectives of attacker and defender do not be aligned/related. 

Indeed, and we have further clarify this point in Appendix 1 and the examples there 

included. 

 The preference list needs further refinement e.g. for possible overlaps. 

We have thoroughly revised the document in Appendix 2 in relation with this idea. 

Recommendations from reviewers 

 REVIEW RECOMMENDATION 1: Dissemination & exploitation activities fall short of 

what could be expected from the project, in particular in regard to the relatively 

short duration (24 months) of the project. While neither SEJ nor ARA are particularly 

new approaches, their inclusion into utility-oriented risk modelling for cyber security 

is – according to the claims of the DoA. This claim should be better substantiated by 

scientific publication and dissemination activities, of which there are precious little 

at the time of the review. The reviewers suggest that the validity and benefits of the 

mathematical approach is corroborated by at least one new and original high profile 

scientific publication from WP3. 

Our paper An Adversarial Risk Analysis Framework for Cybersecurity (appendix 1 of D3.1) 

has been accepted by the journal Risk Analysis on April 9, 2019. The journal Risk Analysis is 

a Q1 journal and one of the main references in the risk analysis field. The computational 

paper has been published in European Journal of Operational Research, also a Q1 journal. 

 REVIEW RECOMMENDATION 4: The project designed two experiments to evaluate the 

attitude and the behaviour of people with respect to security, protection, and 

insurance. However, no test or validation of the toolbox with real end-users has been 

foreseen. In order to evaluate the effectiveness of the developed tool-kit, we require 

the consortium to perform an experimental evaluation with at least two types of end-

users: insurance providers and potential customers evaluating the option of buying a 

cyber insurance product. The evaluation should be performed at M18 and cover both 

usability of the tool and effectiveness for the specific scope important for the user. 

Results should then be analysed to improve the tool towards its final version released 

at the end of the project. 

As detailed in Sect. 2.2, we evaluated the toolbox with end users, in this case potential 

customers, to provide inputs to both the Toolbox and the underlying WP3 models. We 

assessed them, and incorporate most of their suggestions as well as solutions to their 

concerns in the improved versions of the WP3 models. 

 REVIEW RECOMMENDATION 5: The presentation of the software prototype left the 

reviewers somewhat confused, which was mainly due to its generic form (supporting 

different stakeholders) and its representation of general ontology data. Future 

versions of this prototype should give much better indications about (a) the 

stakeholder type currently supported by the software, (b) the stakeholder's decision 

the system offers to support (c) motivation why specific types of data have to be 



   

 

provided for decision support, and (d) intelligible output stating and explaining the 

lines of action available to the user. 

Most of these improvements took place in the Toolbox itself (better indications, 

explanations and intelligibility). When it comes to WP3 models, we focused on simplifying 

the type of data the users have to provide to our models through the Toolbox, specifically 

they are general business or IT information about their organization (number of employees 

or computers) that it is relatively easy to obtain or estimate  - compared to cybersecurity 

information. 

 REVIEW RECOMMENDATION 6: The project might very much benefit by a 

comprehensive overview of existing cyber insurance products (and insurance 

elements linked to Service Level Agreement at IaaS, PaaS and SaaS level) from 

different providers – in regard to: 

- variations of coverage, 

- data points required for defining specific policies, and 

- data points required to create more targeted or more comprehensive ones, 

- types of coverage and pricing customers would like to see on offer, and 

- measures customers and their users have to take in order to become 'insurable'. 

Such kind of overview could be of particular use for guiding and validating the 

modelling activities. It also appears of the essence for any serious exploitation 

planning, e.g. for motivating the shape insurance products, potential 

discontinuations or discouragements of old ones, or for evaluating advantages and 

disadvantages of separating resp. combining cyber-specific risks from other insurable 

risks to business continuity. It would also help to clarify the types and probabilities 

of risks currently not covered by SLA agreement between IT service providers and 

their customers and which may consequently be targeted by insurance products. 

Such overviews were available in Marotta et al (2017) and  Romanosky et al (2018) which 

we have followed for the purpose considered.  

 REVIEW RECOMMENDATION 7: In principle, CYBECO's utility-based approach is 

amenable for designing insurance products, and the model designers are confident 

that they may be able to capture multi-variant and drifting strategies of potential 

defenders, let alone those of potential attackers of IT systems. We stress again that 

this is a hypothesis whose validity we expect to be thoroughly checked and 

documented. 

Besides the publication of our paper “An Adversarial Risk Analysis Framework for 

Cybersecurity”, we also worked on a more specific paper dealing with the elicitation of 

preferences and utilities of the potential defenders (annex 2), specifically we describe a 

methodology that consists in (1) helping the defender define their goals regarding 

cybersecurity through a comprehensive tree of cybersecurity objectives, (2) the integration 

of these objectives into a multi-attribute utility function and (3) the integration of their 

risk attitude into their utility function. We have included in them a discussion on market 

segmentation and insurance design. 
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Annex 11: Validation of ARA for belief formation 

 



 
 

 

Annex 11. Validation of ARA for belief formations 

Rationale 

Structured Expert Judgement (SEJ) elicitation has become a major ingredient within 

the risk analysis practice (Bedford and Cooke, 2001). A significant feature of this 

discipline is its emphasis in decomposing complex problems into smaller pieces that 

are easier to handle and recombining the piecewise solutions to tackle the global 

problem. This simplifies the complex cognitive tasks and mitigates expert reliance on 

heuristics that can introduce bias, ensuring that experts and decision makers actually 

analyze their decision making problems.  The decomposition typically entails more 

assessments, though these tend to be simpler and more meaningful, leading to better 

decisions. One example refers to belief assessment through the argument of 

extending the conversation. Rather than directly assessing the probability of an 

outcome, one finds a conditioning partition and assesses the probabilities of the 

outcome given the conditioning events. From these, and the probabilities of the 

conditioning events, the law of total probabilities enables calculation of the 

unconditional probability of the outcome  

During CYBECO we have presented and studied Adversarial Risk Analysis (ARA) as a 

decomposition strategy for game theoretic problems from a Bayesian perspective 

applying it in the cybersecurity domain. ARA can be framed as a tool for SEJ 

elicitation when we need to deal with probabilities referring to forecasting actions to 

be performed by opponents or, more generally, by other agents not available for 

elicitation, like cyberattackers. As an example, in Chen et al. (2016) nearly 30% of 

the questions posed to experts somehow involved adversaries (e.g. Will Syria use 

chemical or biological weapons before January 2013?, asked in 2011).  

One of the most interesting issues uncovered in the first CYBECO experiment referred 

to the relevance of properly assessing adversarial probabilities. We have also exposed 

theoretically through simulation how the indirect ARA approach may lead to more 

accurate forecasts than if such assessments are performed directly with standard SEJ 

techniques. With this final group of experiments we aim at confirming such issue. 

Experiment implementation 

The face-to-face experiment was carried out in an experimental lab in Barcelona 

(Spain), during April 2019. It was designed by DEVSTAT with the aid of the CYBECO 

advisory board and the CSIC team. The experiment was run using an experimental 

software designed ad-hoc (developed in PHP) and tested before the sessions to 

guarantee its usability and understandability. 

 

The experiment embraced four sessions with 96 participants in total. At the 

beginning of each session, the subjects were randomly scattered among the semi-

cubicles in a room. To avoid presentation bias, the same lecturer led all sessions. 

The lecturer read aloud the instructions and accompanied his speech with a slide 

projector to explain the kind of decisions that the subjects would have to take 

through three examples, and the benefits that they would obtain in the experiment 

depending of the performance. They then undertook the actual tasks and completed 

two simple questionnaires (socio-demographic and level of familiarity with the 



 

 
 

context of the decisions) The economic experiment included a variable payment to 

each subject, depending on the probabilities assigned to a series of events and its 

actual realisation during the days following the experimental sessions. 

 

The distribution by profile of the respondents is shown in Table 1. Three quarters of 

them were public/private workers and were almost equally distributed between both 

genders. Regarding the education of participants, most of them had either some 

years of university or a university degree. 

 

Profile N % 

18-35 26 27,08 

36-50 39 40,63 

51-74 31 32,29 

Male 50 52,08 

Female 46 47,92 

0-11 years of education 1 1,04 

12 years of education 18 18,75 

Some years of university (not completed) 28 29,17 

University degree 35 36,46 

Post-graduate degree 14 14,58 

Freelance 8 8,33 

Public/private worker 72 75,00 

Unemployed 7 7,29 

Housemaker 2 2,08 

Student 3 3,13 

Disabled 3 3,13 

Retired 0 0,00 

Other 1 1,04 

Table 1. Distribution of participants by age, gender, education and employment. 

 

The median duration of the experiment was 30 minutes. 

 

Results 

We describe here the design of the four cases presented to the subjects.

 

 

After providing the instructions, we then ask about the probability pA that some 

person makes a decision which may improve her status or not.  We then assess our 

belief about her beliefs of improving her position as well assess indirectly his 

evaluation of the status quo. Finally, we repeat the first assessment. The 

Instructions  

Assessment  A 

Probability of 
happening 

Assessment B  

Probability that if 
it happens, wins 

Assessment C. 
Certain equivalent 

Assessment D 
Repetition of 
assessment A 



 

 
 

interrelations of all the tasks are presented in the following scheme for a motivating 

example.  

 

 

 

 

 

The assessment  pC is suggested by 

the perceived moment in which 

the subject decides to take part in 

the event rather than remaining in 

the status quo. For example in this 

case it would be pC=70% 

 

 

 

 

 

 

 

The comparisons that we are undertaking refer to:  

 Checking whether after reflections in tasks B and C, there is a change of 

opinion concerning pA vs pD.   In other words whether further reflection about 

the problem induces a change of beliefs. 

 Estimate pA, pD based on pB and pC. Following a simple random choice model, 

we may use the form q=1-pC/(pB+pC) and compare with  pA and  pD,     to check 

a similar phenomenon and analyse the ARA decomposition. 

 Score with a proper scoring rule the performance of both forecasting 

approaches, once the events are realized by the end of May. 



 

 
 

 Check the effects of knowledge level and other demographic factors (age, 

gender, education). 

Here we present descriptive statistics concerning the first of the four questions posed 

which we refer to the decision of Theresa May to call for elections in the next 30 

days. 

Will Theresa May call for elections within the next 30 days 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

Comparison of the probability for Theresa May to call for elections within the next 30 

days before (pA) and after (pD) the reflection. 

 

 

 

Comparison of the probability for Theresa May to call for elections within the next 30 

days before (pA) the reflection and estimation with a simple random choice model 

q=1-pC/(pB+pC). 

 

 

 



 

 
 

Similar results hold for the other three other questions (concerning a new product 

release, the participation in a TV show and the participation in a sport event).  

The results will be fully analysed when the deadline for the events takes place. 

Initial exploratory analyses seem to suggest the relevance of the ARA decomposition 

in belief formation. 

We end up by showing the screenshots of the experiment for the first of the four 

decisions considered in the experiment (Theresa’s May decision of calling for 

elections). The screenshots are in Spanish, since the experiment was run in Spain and 

no version of the experiment in English was developed.  

  



 

 
 

Some screens from the experimental software 

Welcome and basic demographic data 

 

 

 



 

 
 

Becoming familiar with adversarial probabilities. Ficticious case

 

 

 

 



 

 
 

Becoming familiar with adversarial probabilities. Realistic case 

 

 

 



 

 
 

 

 

 

 

 



 

 
 

Instructions for actual experiment nad first case concerning Theresa May 
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